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ABSTRACT

A numerical model is presented for predicting the vertical
varlation of flow through and above large obstructions, with
special emphasis on tidally inundated marsh grass., Because the
grass may extend through the depth of the water columm, thus
affecting the stress at the alr-water interface, the model has
the capability to extend the calculations inte the overlying
air layer. The model is able to compute the simultaneous
vertical distribution of both horizontal velocity compounents.

A scaling analysis of the governing momentum equations for
typical salt marsh geometrics shows that the acceleration terms
are generally negligible compared to the vertical transport
terms. With this approximation, the momentum equation reduces
to a local force balance between the vertical momentum
transport, surface pressure gradient, and vegetative drag
force. A review of previous obstructed flow models solving
this equation reveals that these models are generally unsuited
to the purposes of this study, primarily because of an
inability to provide an a priori parameterization for the
vertical turbulent momentum transport, thus motivating the
development of a different approach.

The two equation k-t technique parameterizes the turbulent
stress using a turbulent diffusivity scheme, in which the
turbulent length and velocity scales are determined from
differential transport equations for the turbulent kinetic
energy (k) and viscous diseipation (g), tius allowing for the
influence of diffusion on the turbulent scales, as well as the
presence of more than one characterizing length scale.
Modifications of the low Reynold's number form of the model
(Jones & Launder, 1972, 1973) account for the additional force
and turbulent energy flux caused by obstructions. The
resulting model equations are solved using a finite control

volume technique.

Model predictions compare favorably with a variety of
analytical and experimental results for a variety of cases,
including non-obstructed open channel and Couette flow, wind
tunnel studies of flow through circular cylinders, a water
flume study of flow through plastic strips, and fleld studies
of flow through bean and corn crops. The model coefficients
are held fixed in all comparisons, demonstrating the predictive
abilities of the model for obstructed flow processes.



A study of free surface flow properties conducted in Great
Sippewlissett Marsh, in Falmouth, Massachusetts, provided the
context for an application of the model to tidally inundated
marsh grass. The measurements taken include marsh topography,
wind speed and direction, water elevation at the marsh
boundary, and vertical profiles of horizontal velocity at a
number of locationa within the marsh grass study area. The
observed and predicted velocity profiles are in generally good
agreement, although it was necessary to adjust the values of
the grass density, which were not measured independently.

Dimensional analysis shows that the obstructed flow
processes are generally dependent on three parameters, relating
to the grass density (a), grass height (hg), and the relative
importance of wind stress to surface pressure. Under many
conditions, the dimensionless grouping Cghga, where (4 is
the drag coefficient, is the only relevant parameter goveruing
obstructed flows. Sensitivity studies demonstrate the
relationships between the governing parameters and the vertical
distribution of various variables, including velocity, kinetic
energy, and dissipation.
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CHAPTER 1

INTRODUCTION

Salt marshes are essentially inter—tidal systems, bordered on one
side by the land, and on the other by an estuary, or the sea. A
network of meandering tidal creeks, similar in appearance to a river
system, connects the marsh to the open water. During flood tide, 1f it
is of sufficient height, the water overtops the creek banks, flowing
out laterally to inundate the surrounding marsh surface and it's
inhabitants, the most influencial species of which is usually a type of

grass called Spartina alterniflora.

The central theme of this study is to understand, and be able to
predict, the vertical variation of flow through and above tidally
inundated marsh grass under the combined forces of a free surface
pressure gradient and wind stress. Specifically, a numerical model is
proposed for simulating the local flow processes in flooded marsh
grass. Such a model should permit the vertical velocity distribution
to be computed for specified local values of grass density and height,
free surface slope, and for the wind stress at the water surface.

Since the marsh grass may extend into the air, thus affecting the
stress at the air-water interface, the model should have the ability to
extend the calculations into the air flow above the water. In this

case, the wind velocity at a given height would be specified. The
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model should be able to compute the simultaneous distribution of both

horizontal velocity components.

1.1 Motivation and Background

Water motion is important to the life processes of aquatic
vegetation, such as marsh grass. The microclimate in which the plants
grow is regulated by the exchange of momentum, heat, and mass between
the water and biologically active plant parts. This exchange enhances
the uptake of nutrients, as well as the removal of gases and other
substances produced during transpiration (Gerard and Mann, 1979). The
rates of exchange depend strongly on the characteristics of rhe water
motion, especially on the level of turbulence (Andersons and Charters,
1982). For these reasons, an understanding of the turbulent flow
processes in the plant environment is important not only to aquatic
plants, but also to terrestial systems, having applicatioms in biology,
agriculture, and forestry.

In addition to it's role in regulating the plant's
microenvironment, the motion of the tidal surface waters is largely
responsible for the transport of crucial nutrients in the marsh, and in
the determination of residence times and concentrations of other
constituents. Surface flow of water through the marsh system
transports detrital material (Haines, 1976), metals (Windom, 1975), as
well as a variety of other materials which may be vital or deleterious

to marsh-estuarine or coastal productivity. The tidal regime may zlso
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affect the productivity of the marshes indirectly through it's
influence on such factors as salinity, pH, temperature, and light
intensity. Steever et. al. (1976) has documented a close correlation
between standing crop productivity and tidal range in a survey of
Connecticut marshes.

Flushing by surface flow is believed to affect the response of
the marsh system to artificial enrichment with fertilizers, perhaps by
influencing nutrient retention (Valiela et. al., 1973; Banus et. al.,
1975). The ability of an estuary or marsh to receive treated sewage
will depend, among other factors, on the flushing rate by surface
waters.

A subject of current debate is whether salt marshes are sources
or sinks of substances guch as organic carbon, inorganic nutrients, and
trace metals (Nixon, 1980). Some marshes have been found to be
regions of rapid deposition, such as the Flax Pond Marsh of New York
(Woodwell et. al., 1977). Others, such as Great Sippewissett Marsh in
Massachusetts, have been observed as being sources of various materials
for the outlying open waters (Valiela et. al., 1978). Because of the
great variability of the hydraulic features of coastal marshes, no
single answer will fit all situatioms. Efforts to understand the
direction of material transport in marsh systems must consider the
patterns and magnitudes of circulation in the marsh, as well as

between the marsh and the outlying areas.

Despite the importance of a knowledge of water transport in the
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marsh ecosystem, both to research and management practice, this problem
has received little attention in the past. While conaiderable effort
has been directed towards large scale circulations in eoastal bays and
estuaries {(Wang, S.Y., et.al., 1980), relatively little work has been
done on flow models applicable to salt marsh conditions. The surface
flow in a salt marsh is primarily unidirectional in the channels and
creeks within the marsh, while spreading out laterally as a two-
dimensional flow across the shallow grassy areas. Although tidal
circulation models have been applied to the flow in a marsh channel
system {Fischer, 1977), and to the flow over un-vegetated tidal fléts
{(Abbot, 1969; Leendertse, 1970; Herrling, 1976; Holster, 1980), there
is only one known previous model of lateral flow in marshes, done by
Reid and Whitaker (1976). It is important to note that the limitation
on this type of modeling effort has been a lack of basic knowledge
regarding the hydraulic properties of surface flows through dense marsh
grass. Of particular importance is the lack of information relating
the turbulent flow structure to the properties of the marsh vegetation.
While there is no known study of flow resistance through marsh
grass, there have been investigations of flow through other kinds of
vegetation, such :s that found in rivers. The value of Manning's n
has been defined for several types of channel linings (Barmes, 1967).
Ree and Palmer (1945) give design curves for vegetated chaumnels found
in the U.S. A summary of their results is presented in Chow (1954},

as well as in Henderson (1966). 1In a later study, Ree and Crow (1977)
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give similar design curves for earth channels of small slope planted to
wheat, cotton, and other plants. These studles treat the vegetation as
large boundary roughness, and provide no information about the flow
within the obstructions.

In addition to the studies of vegetation resistance in rivers,
considerable work, both experimental and theoretical, has been done on
the subject of canopy flow fields, which are wind fields as affected by
a crop or forest. Early efforts in this area are summarized by Geiger
(1950). Measurements of flow characteristics have been made over
various crops, such as beans (Thom, 1971), corn (Shaw et. al., 1974),
as well as over forests (0Oliver, 1971). Mathematicl models for the
flow of air through canopies have been proposed by Inoue (1963), Cowan
(1968), and Kondo (1976). In these models, the transport of momentum
is parameterized by conventional eddy viscosity or mixing-length
hypotheses. Higher order closure models, which solve for the
individual stresses, have also been constructed (Wilson and Shaw,
1976). The obstructed flow models mentioned above are reviewed in
Chapter Two, which finds these schemes generally inappropriate to the
purposes of this study, prompting the development of a new approach to

model obstructed flow processes.
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1.2 Scope and Major Conclusions of this Study

The objective of this study 18 to create a computational
mnethodology for determining the vertical distribution of flow above and
within obstructions, such as tidally inundated marsh grass. A brief
outline of the steps followed in the model development is given below
through a description of the topics covered in each chapter of this
report. Also given is a summary of the most important conclusions
reached in each chapter.

The full three dimensional equations governing obstructed flow
are introduced in Chapter Two. A scaling analysis of these equations,
relating to typical New England marsh geometries, iz then presented.
This analysis shows that for flow configurations usually encountered in
New England marsh2s the local acceleration and convective terms are
generally negligille compared to the vertical transport terms. With
this result, the surface flow regime in inundated marshes reduces to a
local balance bet:een the surface slope pressure gradient, vertical
momentum transfer, and the drag force on the marsh grass.

Chapter Two also presents a literature review of previous
empirical relationships for the drag force as a function of the
obstructions and for the momentum transport. On the basis of this
review 1t is concluded that previous obstructed flow models contain
several features making them unsuited to the objectives of this study.
First, these models generally take no account of the influence of

diffusion on the turbulent flow structure. Second, the turbulent
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length scale is almost always assumed proportional to a single scale,
when in fact there are generally two length scales in obstructed flows,
one assoclated with the depth of the obstructions, the other with their
density. Third, previous obstructed flow models, with one exception
(Reid and Whitaker, 1976), were designed for flow through vegetative
canoples, and as such do not account for the presence of a free
surface, such as will exist in tidally inundated marshes.

Chapter Three explains the concepts behind the two equations k-€
closure approach proposed in this study to parameterize the momentum
transport. The adaptations necessary to handle the presence of
obstructions are developed; these include the addition of terms
representing the production of turbulent kinetic energy by the
obstructions, as well as a term accounting for the effect of the
obstructions on the vertical momentum equation. Similar to the scaling
analysis performed for the momentum equation, it is shown that the
acceleration and horizontal gradient terms in the differential
transport equations for the kinetic energy (k) and the dissipatien (¢)
are negligible compared to the vertical transport ternms.

Following the model alterations, Chapter Two describes the
iterative finite contrel volume technique used to solve the model
equations. Model predictions are then compared with analytical and
experimental results for a wide variety of cases, including non-
obstructed open channel and Couette flow, wind tunnel studies of flow

through circular cylinders, a water flume investigation of flow through
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plastic strips, and field studies of flow through vegetative canoples
such as beans and corn. The observed and predicted distributions of
velocity, as well as stress in some instances, are found to be in
generally good agreement. Also illustrated in this chapter 1is the
model’s ability to compute the distribution of more general turbulent
properties such as turbulent kinetic energy and dissipation. The model
coefficients are held fixed in all comparisons clted above,
demonstrating the predictive abilities of the model for obstructed flow
processes.

Chapter Four presents the results of a field study of free
surface flow properties conducted at a specific study site in Great
Sippewlssett Marsh in lassachusetts. The data collected include marsh
topography, wind speed and direction, water elevation at the marsh
boundary, and the vertical profile of horizontal velocity at a number
of locatlons within the marsh grass study area. All parameters were
measured throughout & rising and falling tide during which the study
area became inundated. After being analyzed, the field data is used in
model simulations of the flow at the measurement stations} the grass
densities, not being known, are fit so that the predicted velocities
within the grass agree with the observed measurements. The same grass
density profiles are used in all comparisons made at any one
measurements station. In those cases where the grass extends
completely through the water column, the velocity is seen to be fairly

uniform with depth, as compared to those cases where the grass is
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submerged beneath the water surface. This latter type of flow shows
significant gtructure in the vertical velocity distributions, as
demonstrated by both the observed and predicted results, which are seen
to be in generally good agreement in the above grass region.

Chapter Five arranges the kinematic variables governing
obstructed flow into dimensionless parameters. The major flow features
are found to depend on three parameters, relating to the density of the
obstructions, the ratic of the depth of the obstructions to the total
flow depth, and the relative magnitude of the free surface pressure
force to the wind stress. Investigations are then presented
considering the relationships between these parameters and the vertical
distribution of various variables, including velocity, kinetic energy,
dissipation, as well as the turbulent diffusivity and length scale.
Also consldered are the depth averaged flow conveyances, and the shear
stresses at the top and bottom of the obstructions.

The dimensionless parameters and the model are also used in
Chapter Five to examine previous methods for determining the turbulent
length scale in obstructed flows, and to calculate the values of
empirical coefficients appearing in commonly used analytical
expressions for flow above and within vegetative canopies. The model
is shown to reproduce the observed trends in these coefficients, as
well as their magnitudes.

Finally, Chapter Six discusses the areas in which future work is

merited, including such topics as further applications of the model,

and numerical improvements to increase the model's efficiency.
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CHAPTER TII1

BACKGROUND

2,1 Intrpduction

The objective of this study, as discussed in the previous chapter,
is to develop a numerical model capable of predicting the vertical
variation of a basically horizontal fluid flow through and above vertically
oriented obstructions, such as vegetation, In particular, the model
should be able to handle those physical conditions found in tidally
inundated salt marsh flats. To account for the wind stress at
the air-water interface, which may lie below the top of the grass, the
model should be able to solve for the air flow, as well as the underlying
water movement.

This chapter presents the governing equations of motion applicable
to tidal marshes. Starting from the full, three dimensional Navier Stokes
or Momentum Equations, various assumptions are made in Section 2.2 to
reduce the equations into a more amenable and commonly used form. Next,
these equations are horizontally averaged over an area large enough to
remove the influence of individual obstructions. It is this averaging
process that introduces the effect of the obstructions into the momentum
equations. Next, a scaling analysis of the temporally averaged
momentum equations shows that the acceleration and Coriolils terms may be

neglected. Finally, a review is presented of previous canopy flow models.
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2.2 Governing Egquations

Assuming a constant fluid density, the temporally averaged mass and

momentum equations at a point within the canopy are

aui

px; 0 (2.1a)
Du at :
i < . 9P R E

p it + DFi axi + pgi + 3xj (2.1b)

where i=1,2,3 refers to the x,y, and z axis, respectively, as shown in
Figure 2.1; o is the fluid density; p is the pressure; gy is the
gravitational force per unit mass in the ith direction, and; Fl’ F2 = ~Qv,
Qu are the Coriolis forces, with § being the Coriolis parameter,

(¢ is about 10_4 sec_l at a latitude of 40 degrees). The z axis points
vertically upward, opposite to the direction of gravity. The total

derivative D/dt is
D ] )
= — 4 —
dc " et T M ax, (2.2)
i
The stresses Tij are defined in accordance with conventional sign
notation. Remembering that the velocities are time averaged, the stresses
are seen to include, in addition to viscous forces, Reynold's stresses
created by turbulent convection of momentum. The stresses are
du,
1

ju
- S T E e o
Tij u (ij + axi) puiuj (2.3)

where p is the molecular viscosity, ui = turbulent fluctuations around
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the mean value, and the overbar denotes the time average over a short

time interval.

Equations (2.1) are unnecessarily general for most sea or lake
circulation problems, and are simplified by the boundary layer
approximation, which makes the assumptions that (1) the vertical velocity
and it's gradients are small cqmpared to the horizontal velocities and
their gradients, and that (2) the longitudinal and lateral variatioms in

d 3

gstress are small compared to the vertical variations, i.e., é% >> o 3; .

With these assumptions, the vertical momentum equation reduces to a state-

ment of hydrostatiec pressure distribution

p = pg(n-2) (2.4)

where g is the acceleration due to gravity, and n is defined in Figure 2.1.
Substituting (2.4) into (2.1), and making use of assumption (2), the

x and y momentun equations become

Du a1
i N an 3
P 3t +PF1 pg axi + 3x3 (2.5)

where, from now on, 1 = 1,2.

Equations (2.5) are time-averaged; they apply to any point in the
fluid and, as such, do not explicitly account for the presence of
obstructions, the effect of which appears by averaging the equations
horizontally over an area large enough to eliminate the influence of
{ndividual obstructions. This averaging process is given by Wilson
and Shaw (1976), as well as Thom (1981). The additional terms generated

by the averaging process represent the drag forces imposed by the
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obstructions in the flow. In all models known to the author, they are

parameterized by a quadratic law, as follows:

Magnitude of Cda
Drag Force per = g 5 (9Yy
Unit Volume

where C4 is the drag coefficient, and a(z) is the vegetation demnsity,
defined as the projected area of obstructions, per unit volume at the
level z, on a plane normal to the flow (Thom, 1971). Thus, for instance,
in a flow through uniform cylinders of diameter (D) and spacing (8), with
their axis parallel to the z direction, the value of (a) would be D/Sz.

The momentum eguations can then be written as

Du 9T C.a
i _ .. an 1 d 1/2
R Y J:4 ax, + %, P ui(ujuj) (2.6)

where the horizontal velocities, as well as the stresses, are now
temporally averaged to remove turbulent fluctuataions, and spatially
averaged to remove influences due to interplant spacing.

The above equation assumes that the volume of the obstructioms is
much less than the total volume (i.e., the sum of the volume of the
obstructions and the fluid volume). Making an analogy to porous media
flow, this is equivalent to assuming that the porosity is near one, which
is certainly a reasonable approximation for the types of situations of
interest in this study. Continuing this analogy, it follows that the
discharge velocity for obstructed flows will be approximately the same as

the seepage velocity.
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Equation (2.6) does not include an added mass term, representing the
force necessary .o accelerate the fluid past the obstructions (Daily and
Harleman, 1966). As will be shown below, the acceleration terms for
typical salt marsh geometries are generally small enough, when compared to

the vertical momentum transport, that they may be neglected.

2.3 Scaling Analysis

One of the basic assumptions in this study is that the major balance
in the momentum equation occurs between the shear, pressure, and drag
forces, which are large compared to the total derivative and Coriolis
terms. This section presents the justification for this assumption. The
analysis makes n¢ reference to the drag terms, and, as such, is
independent of the presence of obstructions. Under most clrcumstances, of
course, the drag terms will probably play an important role in determining
the flow over the marsh. It is possible, however, that in some localized
areas, such as algal mats, there may be little, if any, vegetation.
Excluding the obstructions gives the analysis a greater generality, and
width of applicability, than would have been possible by assuming a
certain value of the vegetation density {a). In genersl, the presence of
the obstructions, by retarding the flow, will tend to strengthen the basis
of the approximations, as shown later.

The approach followed here will be to estimate the order of magnitude
of the terms in the momentum equations, and then to show that, under
various flow conditions, the size of the total derivative and Coriolis

forces are small compared to the shear of pressure terms, which will be
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assumed in balance (in the absence of obstructions).

To estimate the size of the various termsin the momentum equations,

scaling parameters are needed relating to typical New England marshes;

these parameters, given here for future reference, are

L

AH

AH/L

All

horizontal length scale. L will be on the order of 102 to 103m
as shown in Figure 4.1, which is a map of Great
Sippewissett Marsh in Falmouth, Massachusetts.

vertical length scale. H will be about .1 m, the depth to
which the marsh flats are inundated.

free surface elevation change

free surface slope

velocity scale in the horizontal direction

velocity change due to non-uniform flow

friction velocity (r/p)ll% For the unobstructed flow assumed
here, a relationship between U and U, may be obtained from

the friction factor expression Ui = CfUz, where

Cs ig a friction factor of magnitude .0l for rough turbulent
flow (Henderson,1976). This relationship will be assumed to
hold for both tidally driven and wind driven cases.

time scale. T may refer to either the flooding time of the
marsh flats (T ~ 104 sec.), or the time it takes for a wind

set-up to become established on the marsh, determined later.
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With these parameters, the various terms in the momentum equation can

be estimated as

3u su at
i i on 1 "3
— +u, —+F, =-g—+ -
p
It j ij i Bxi 3x3
) 2.7
' U
U UAU AH ok
@ ) @ &) o
The following additional assumptions are also made; 2

U
®
(1) the slope and shear are in approximate balance, l.e., g %¥-= T

(2) the terms in the continuity equation (2.la) can be estimated as
au1 3u2 3u3

£ +—== =0

Bxl sz 3x3
U

AU AU 3

& D P

where U3 is the characteristic velocity in the vertical direction. For

steady flow, U3 may be approximated using the kinematic relatiomship,
i i. U, = UsH For unsteady flow, U, may be taken as U M.
giving Uy = =7~ - un y » Uy may en 3= T s
expressing the fact that if, in a timeT',the water depth changes by an
amount H', then tie vertical velocity will be about H'/T'. With these
AH H'

, AU U
expressions for U3. jf-becomes oL and ol for gsteady and unsteady

flow, respectively.

Using the ra2lationships in (1) and (2) above, as well as the friction
factor expressiom, it is possible to show that the D/dt and Coriolis
terms are generally smaller than the slope or shear terms. This will be

done by consideriag various flow configurations typical of marsh flow
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situations; as shown in Table 2.1, three configurations will be considered;
(1) tidally steady flow, (2) tidally unsteady flow, and (3) wind driven
flow. For each configuration, Table 2.1 gives the values of ;he scaling
parameters, as well as the magnitudes of the terms in (2.7). Two general
situations are considered, one with L = 102m, the other with L = 103 m.

For each flow configuration, certain of the parameters will be uniquely
defined; knowing the values of these parameters, it 1s then possible,

using the relationships described above, to obtain the remainder of the
scaling parameters. The parameters unique to each configuration are

given below, together with a description of the physical clrcumstances

under which each case might occur.

(1) Tidally steady flow
This mightoccur during flood, or ebb, tide on sections of marcsh
bordered by tidal creeks. The water slope (%?9 is then uniquely defined
by the tide; from measurements takem in the field (see Chapter four),
%?—will be about 10_4. Knowing L, it is then possible to calculate
AH | 1 UAH

AH, and the remainder of the parameters (Ui = gHiT-, B = ;:: U, 5 AU = —ﬁ-ﬂ
C
£

(2) Tidally unsteady flow

This might occur on dead-end sections of marsh bordered on one side
by an open water body, such as a creek, and on the other side by a solid
boundary, such as an upland. The velocities U and AU are uniquely defined:

L}
as discussed earlier, %? for unsteady flow is about-ﬁ%r ; in this case,
H'=H, and T'=T ~ 104 sec. Noting that the velocity at the solid boundary

will be zero, the velocity change AU over the length L is seen to be
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about the same as U, giving U ~ AU ~ L/T. Using the known values of L and

T to find U ~ AU, the rest of the parameters can then be obtained
U2

Ux Ly

H g

(U, = /E;-U; AH

(3) Wind driven flow
This case corresponds to wind blowing over the water surface,

creating a slope %? . The time it takes for the slope to become

established, assuming an initially flat surface, can be estimated most
simply by recognizing that, from continuity,~%% = U*H, where A is the volume

of water displaced by the wind. Taking A=(Q(4HL) gives AHL = UHT, or

- AHL
UH

The value of U, is defined by the wind stress. From Wu (1969), the

T

2
wind stress (TS) can be taken as approximately T, = Da(-001 UlO)’
where UlO is the wind speed at a reference height of 10m, and Pa is the
density or air (pa Nl kg/ms). Estimating the range of U10 to be between

1 and 10 m/sec., with Py ™ 1000 kg/ms, the corresponding values of'U* =

(Tsfpm)1/2 become .00l and .,01 m/sec. Having determined U,, and the
expression for T, it is then possible to calculate the rest of the
2
parameters (U=—l—-U ; AH = Uy L 1 T = 4HL ; AU = UsH )
o * H g UH H

£
Reviewing Table 2.1, the Coriolis forces are seen to be at least an

order of magnitude less than the pressure or slope terms for all cases.
For most cases, the unsteady and convective terms are also small
enough to be neglected. The three exceptions to this are cases 3A, 3C,
and 3D, where the unsteady terms are as large, or greater, than the
slope terms. The reason for the large magnitude of these terms can be

traced back to the relatively small values of T; as the time it takes
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for the wind set-up to become established decreases, g% “'%'becomes
relatively larger.

In these three cases, the unsteady terms will play a role in the
momentum equations during the time T before steady state conditions are
established. Because this period is small compared to the marsh
flooding time, it will be ignored, on the grounds that the conditions
existing during this unsteady period are not representative of those
encountered during most of the time the marsh is flooded, and would not
have much of an effect on the overall flow field.

In summery, for the conditions typical of coastal New England salt
marshes, the total derivative DUi/dt and Coriolis forces have been shown
in the above analysis to be negligible compared to the pressure or slope
terms, or important over a period of time short emough that it can be
overlooked. Again, no reference has been made to obstructions, such
as vegetation, the presence of which would increase the friction factor

C., thus further supporting the approximations.

f
Without the acceleration or Coriolils terms, the momentum equation

reduces to the form shown in{2.8), which represents the final form of

the momentum equations used in this study.

9T

3i an Cda 1
— s—— + e —
3x, PE Bx, p =5 uyluyny)

/2 (2.8)

The vertical velocity distribution at any location in the marsh is thus
taken to be established quickly, as determined by a local horizontal
force balance,and is relatively independent of unsteadiness, or horizontal

convection. The relative unimportance of these factors will also be
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used in the next chapter to simplify the transport equations for other
variables.

This assumption does not imply, however, that there is no lateral
connection at all between different locations in the marsh. Such
interaction would arise through the continuity equation; as the water
moves from one location to the next, the water height, as well as the

slope, would likely change, thus altering the pressure forces in the

momentum equation.

2.4 Previous Canopy Flow Models

This section reviews previous attempts to solve for the flow through
and above vegetative canopies. Almost exclusively, the models presented
here were developed for airflow, and take no account of a free surface,
such as will exist in marsh flow. The only model known to the author
that treats water flow through vegetation was done by Reld (1976).

Most airflow canopy models assume the pressure term in (2.8) is
small, and the x axis is aligned with the direction of mean wind, so
that the momentum equation becomes

dt _ Cda
iz - P 7 “I“l (2.9)

where 1 refers only to the turbulent stress pu’'w.

2.4.1 Flow above the Canopy

Many researchers, uninterested in the flow through the canopy layer,
have treated the vegetation as roughness elements. Analogous to classical

theories of flow over rough surfaces, the influence upon the flow of a
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canopy of heightl%js felt throughout a roughness layer that may extend
well above z=q§ At its upper limit, the roughness sublayer merges with
an inertial sublayer in which the velocity may be expressed by the
semi-logarithmic law (Monin and Yaglom, 1971)

Uy z~-d
- gn (;‘;—') (2.10)

u =
where u, 1s the friction velocity in the inertial sublayer; K is the

von Karman constant; z is the roughness length; and d is the zero-plane
displacement height, usually thought of as the level to which the
effective surface must be raised to make the wind profile in the inertial
sublayer obey the semi-logarithmic law (Thom, 1981). If the vegetation

is small enough, d may be taken as zero, in which case {2.10) reverts back

to its familiar form.

Determination of z and d for vegetative surfaces is best done by
experimental determination from wind velocity profile measurements.
Brutsaert (1982) summarizes roughness parameters for various surfaces,
with z, ranging from .001 cm for ice to 165 cm for Tokyo, Japan.

In the absence of experimental data, it becomes necessary to
estimate z and d from empirical relationships. Brutsaert (1982)
suggests that, as a first approximation, zolhg and d/hg may be taken as
1/8 and 2/3, respectively. In reality, of course, these ratios will
be complicated functions of surface characteristics, such as vegetation
density. Nevertheless, in the absence of wind profile datas, practically

the only recourse is to make use of these, or similar, relationships.
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Reid and Whitaker (1976), in amodel of wind drivenwater flow through and
above obstructions, divided the water depth into two layers, one within
the canopy, and one above it. The equations of motion were then averaged
over each layer. The interfaclal stress at the canopy top was formulated
in terms of a coupling coefficient (f') and the velocity difference
between the two layers. The value of f' was determined by fitting the
model predictions to a laboratory study by Tickner (1957) on the effects
of wire screens on wind set-up in 2 model channel. Having thus
determined f', Reid was able to solve for the flow in each layer.

There are several drawbacks to Reid's approach. Probably the most
important is that no evidence 1s presented to show that the chosen value of
f' yields satisfactory predictions for any data other than Tickner's,

It seems unlikely whether a single value of f' would apply for all
vegetation demsities, under all conditions. To the extent that f' must
be reevaluated for different values of (a), water depth, and other

variables, the predictive abilities of the model are restricted.

2.4.,2 Flow within the Canopy

Solution of (2.9) for flow within the canopy requires specification

of (Cd) and (a), and a turbulence closure assumption for the shear stress.

These subjects are dealt with below.

Determination of (Cd) and (a)

The drag term in (2.9) contains the parameters (a) and (Cd). The
vegetation density (a), defined earlier as the frontal area of the

obstructions per unit volume, is usually determined from field experiments.
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A common method for determining (a) for commerical crops such as corn or
beans is to take several plants from the field and superimpose them on a
large grid drawn on sheets of paper. Plant shapes are then drawn on the grid,
measured, and used to calculate plant area as a function of height. This
approach is less practicable for vegetation such as marsh grass, having a
higher density of plants, many of which are interlinked with each other.

The drag coefficient (Cd) may be taken as (Brutsaert, 1982)

where Re = (puLL/u), LL is a characteristic length scale of the leaves, and
b and ¢ are approximately constants, For isolated objects having simple
geometries, such as a cylinder or plastic strip, b and c can be estimated
(Schlichting, 19685. Studies have also been done on the drag coefficients
of isclated elements of vegetation canopies, such as spruce shoots
(Landberg and Thom, 1971), these being representative of a forest company.
Thom (1968), in a wind tumnel study of bean leaves, found the drag,
not surprisingly, to depend strongly on the angle of incidence (©) of the
leaf to the mean flow, with C, ranging from .03 for &=0° to .8 for ©=90°,
At typical angles of incidence encountered in the field (©=20°), the drag
was found to be a mixture of form and skin friction, with a ratio of about
three to one, and a magnitude of .3.

In-situ measurements of (Cd) within canopies have also been performed,

usually by first determining the stress, such as with a hot wire anemometer;
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knowing u, (a), and T, (2.9) is then solved for (Cd). Representative values
of (Cd) for various crops are .32 for corn (den Hartog and Shaw, 1975), .08
for beans (Thom, 1971), and .8 for spruce trees (Raymer, 1962).

The drag coefficient measured in situ within a canopy has been
found to be usually several times smaller than that of an isclated element
in an equivalent uniform flow, i.e., a flow having the same velocity as that
measured in the spaces between the elements of the canopy (Thom, 1981).
Note, for example, the difference in Cd between the bean leaves and the
bean crop, mentioned above. The ratio of (Cd) for the individual element
to that of the canopy is called the shelter factor (p).

Although not entirely understood, (p) is generally believed to be
caused by mutual aerodynamic interference of neighboring obstructions,
although other factors, such as leaf movement, may also play a role.

Field values of (p) are usually between three and four, as determined by
Thom (1971) for a bean crop, and Steward and Thom (1973) for a pine
forest. Seginer (1976), in a wind tunnel study of circular cylinders
having R.e * 1000, also found p = 3; however, Thom (1971), in a similar
canopy with Re s 60, found p + 1, thus suggesting a possible Reynold's
number effect.

Seginer (1976), studying the data of compact heat exchangers at
R, = 1000, noted that the drag coefficient of circular cylinders decreased
with increasing density, going from a value of Cd=1 for a=0 to Cd=.3 for
a=50nfl. Further investigation into the heat exchanger data literature
revealed that the values of (a) were consistently above SOmﬂl, an order of

magnitude larger than that found in vegetative canopies. Such large
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differences in (a), and the accompanying large differences in the flow
interference patterns, make use of the heat exchanger data impractical for
applications relating to natural vegetation.

Reviewing the above discussion, the drag coefficient for vegetative
canoples is seen to depend on the size and shape of the elements, their
angles of attack relative to the flow, and their mutual interference,
making extrapolation from laboratory studies difficult. Given these
complexities, models of cancpy flow usually either rely on experimental
observations of (Cd) taken in the canopy of interest, or, more often,

determine (Cd) by trial and error to give the best fit to the data.

Turbulence Closure Assumptions

Solution of (2.9) requires some turbulence closure assumption about

the stress. Almost universally, previous models have made recourse to the

turbulent diffusivity approach, in which

., ou
T= 3y (2.11)

where e is the turbulent diffusivity. The closure problem then shifts
from T €O U.. Unlike u, the molecular viscosity, u, is not a property

of the fluid, but rather of the local state of turbulence (at least, that
is what is assumed). Continuing this line of thought, B¢ is frequencly

expressed as
Me = PV Ry
where Vt is the velocity scale of the turbulence, and £t is the turbulent

length scale., Determination of for canopy flow models has usually
g Hy

followed one of two routes; the mixing-length approach, or the diffusivity
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approach.
The mixing-length approach, based on the Prandtl von Karman theory

for turbulent boundary layers, maintains that

du

2|
He " 4z

2u]
9z

velocity scale. With the assumption of a constant mixing length zc and

where Rt = % is called the mixing length and Vt = £ is the turbulent

Cq2 = constant, one solution of (2.9) is

ulz)  _ _
u(hg) = exv(ac(z/hg 1))

where u(hg) is the velocity at the top of the canopy (z-hg), and

_2)1/3.

. 1 3
@ is the attenuation coefficients, given as (Z-Cda hgzF

This derivation, introduced independently by Inoue (1963) and Cionco
(1965), yields an exponential wind profile. There are too many
assumptions in it to be regarded as anything more than an empirical fit.

In addition, it does not satisfy the lower boundary condition that u=0C

at z=0 and hence, while empirically convenient, is mathematically arbitrary
(Thom, 1981). Nonetheless, this apprcach is widely used, largely
because, by suitably fitting the parameter a reasonable predictions of
the upper part of various canopy wind profiles have been otained. Cionco

(1972) summarizes the best values of a for numerous canopies, ;

The diffusivity approach relates My directly to other variables in
the momentum equation, and makes no mixing length assumptiom. Cowan

(1968) assuming “t/“ = [ut(hg)/u(hg)] and Cda = constant, generated the
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hyperbolic wind profile

1/2
[sioh(a =) (2.14)

sty ’_sinh(amhg)J

where aw is a parameter; this result satisfies the lower boundary
condition. Assuming that both Me and Cda are constant, one obtains

(Landsberg and James, 1$71; Thom, 1971)

u_ _ _ oz q~2
.ETE;T = [1+ a& 1 hg)] (2.15)

where a& is another parameter. As with the exponential profile, this
result does not satisfy the lower boundary condition. While both a, and
a& can be expressed in terms of the parameters governing (2.9) and i
they are operationally empirical coefficients, determined by comparison
against experimental observations,

Despite the different ways in which (2.13), (2.14) and (2.15) were
derived, they all give wind profiles that have similar shapes, and
that decay monotonically with depth. These models rely heavily on
fitting parameters for their success, and can not handle vertically non-
homogeneous canopies without direct integration.

Another disadvantage of these models is that, while describing the
ghape (u/uﬂgn of the velocity profiles, they say nothing about it's
magnitude. Values of u(hg)and ut(hg)required in the expressions must be
either known from experiments, or calculated by joining the equations

to the corresponding formulation of the inertial sublayer (i.e., (2.10))
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at z=hg. This embodies the assumption, not necessarily accurate, that
the mean height of the plants hg coincides with the lower boundary of

the inertial sublayer. Accordingly, the turbulent diffusivityLk(hg) in
(2.14) becomes, by virtue of (2.10) and (2.11), ut(hg) = kd*(hgd), where
u, is the friction velocity in the inertial sublayer. The value of

u(hg) is found by substituting z-hg into (2.10), thus requiring knowledge
of z, and d.

To overcome these difficulties, numerical models have been developed
that extended the calculations above the level zéhg. Kondo and Akashi
(1976), in one such model, parameterized the shear stress using a mixing
length approach, in which g was taken as being proportional to llcda. To
prevent ¢ from becoming infinite above the canopy layer, the following

restriction was added,

|.g§| <«
The proportionality between £ and Gda is based on the assumptions

that (1) the production of kinetic energy by the vegetation (Pd) is in

approximate balance with the viscous dissipation of turbulent energy (e),

and (2) the mean velocity {(u) scales with k3/2

, where k = %-G;ﬁ; is
the turbulent kinetic energy. As discussed fully in Chapter three,
Pd=0 (Cdaua) and e=0 (k3/2l2); with these estimates, and assumptions (1)
and (2), it is seen that Zmllcda.

This model contains several weaknesses. The first concerns the

ability of the mixing length approach to adequately describe the

turbulent transport. A general feature of all mixing length models is that
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they are equivalent to assuming that the turbulence produced at a point is
dissipated by viscous action at the same point (see Section 3.2.5). No
account is made of the influence of diffusion on the turbulent length
scale. This is a potentially serious flaw for canopy flow, where downward
diffusion of turbulence will likely play an important role in the transport
of momentum, as well as other quantities, such as heat or water vapor.

In addition to this drawback, there are questions concerning the
validity of the assumptions on which the proportionality between £ and Cda
are based. It seems unlikely, for instance, that the diffusion of kinetic
energy, and production by shear gradients, will always be small, as implied
by assumption (1) above. Another concern is that, besides preventing
abrupt changes in % when (a) becomes small, no physical justification
is given why d¢/dz should be less than K. Tennekes and Lumley (1972) note
that algebraic prescription of turbulent scales is best done when these
scales are unique. This will not be the case for marsh flow problems,
in which there will usually be two length scales, one associated with the
mean velocity gradients, and one with the wake generated eddies.

Despite these drawbacks, this formulation for the turbulent length
scale 1s used by Wilson and Shaw (1976), who closed (2.9) using a second
order technique. Their model consists of five equations for five variables:
velocity, Reynold's stress, and the three components of the turbulent
kinetic energy. Higher order terms were parameterized with the help of
three length scales, assumed proportional to a master length scale 2,
prescribed in a similar fashion as in Kondo's model. The constant of

proportionality between £  and Cda was determined by trial and error to
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give the best fit to a set of experimental observations within a corn crop.
In formulating the bottom boundary conditions, Wilson & Shaw assumed the
existence of a logarithmic layer, without giving any justification for
it. The presence of obstructions may well alter tlié‘:riear-wall turbulence
structure from that in conventional open channel flow gituations.

one of the main reasons behind Wilson & Shaw's use of a second order
closure technique was to be able to predict reversals of wind gradient

C%E < 0) when solving (2.9). Such regions of wind gradient reversal have

z
been observed in the lower parts of some canopies (Lemon et al., 1970;
Oliver, 1975). That a turbulent diffusivity closure approach can not cope
with this phenomenon can be seen by noting that, for flow governed by (2.9),
the shear stress will be a monotonically increasing function of height. The
eddy viscosity expregssion T = ut-%g dictates that the velocity will then
also increase steadily (assuming By is not negative). This limitation
arises because of the imposition of the flux-gradient model, and is not
necessarily implied by the basic flow equation (2.9).

Shaw (1977}, from the equation for the local rate of change of the
Reynold's stress :F;;F, gshowed that, under certain conditions, the mean wind
gradient can reverse in direction within a canopy. The allowable conditions
for this to occur are most readily satisfied by canopies, such as trees,
having a large, leafy surface near the top, and a rather sparse trunk space
iower down. It is for these kinds of canopies that wind gradient reversals
are most common (Brutsaert, 1982). For obstructions such as marsh grass,

having a more uniform distribution of vegetation density, with the highest

values occuring near the bottom, such reversals in velocity gradient are
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much less likely to occur, and, as such, do not seem a serious comncern
for this study.

Lewellen and Sheng (1980) expanded Wilson and Shaw's model to include
other effects, such as skin friction, but did not alter the basic model
formulations. They did, however, extend the calculations to the canopy
floor, where the velocities, as well as the gradients of the turbulent
fluxes, were set to zero. While including viscous terms in the momentum
equations, no §uch terms were added to the equations for the Reynold's
stress, or the components of the kinetic emergy.

The models of Kondo, Wilson and Shaw, and Lewellen and Sheng have
been demonstrated by their authors to describe with reasomable accuracy
experimental observations of wind canopy flow. Universally, however,
one data set was used for comparison, raising questioms as to the
ability of the models to handle other situations, having different
surface characteristics., Wilson and Shaw smoothed the gradient of the
Reynold's stress in the region above the canopy to yield better fit
to the data; to the extent that this will always be necessary, the
predictive abilities of the model are reduced.

This section has described previous turbulent closure assumptions
used in canopy flow models. The main features of these models are
summarized in the next section, and are compared with the desired

attribures of a flow model for inundated marsh flats.
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2.5 Summary and Conclusions

Table 2.2 sumarizes the main features of the canopy flow models
discussed previously. That these models are inappropriate to the study
of flow through inundated marsh flats can be seen by reviewing the
requisites of such a model.

Obviously, any marsh flow model should be able to handle a free
gurface. In order to predict the wind stress at the air-water interface,
which may lie below the top of the vegetation, the model should also be
able to solve for the overlying air flow. Ideally, the same set of
equations should be used in both cases, the differences appearing only
through the boundary conditions.

A second desirable attribute, relating to the parameterization of
the turbulent transport terms, i1s that the model should contain no a priori
specification of turbulent length or velocity scales. As discussed
earlier, such specification (1) does not account for the influence
of diffusion, (2) is difficult to implement unless the scales are unique,
which will not be the case within a canopy, and (3) requires different
formulations, depending on whether or not the water or air flow is being
solved.

A third desirable attribute of a marsh flow canopy model is that
it takes into consideration the fact that, in the presence of obstructions
such as vegetation, the near-wall variation of mean and turbulent
quantities will differ from those found in non-obstructed flow situations.
If the model equations are extended to the canopy floor, terms should be

added to include near-wall viscous effects. Because a large fraction
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of the total change of a variable may occur in the region near the wall,
it is important that this zone be modeled correctly.

A fourth requisite of a marsh canopy flow model is that it be able
to handle a wide range of geometries and physical conditions. In
particular, this refers to the vegetation density (a): the model should
be able to handle cases ranging from very little, or no vegetation (a=0),
up to values of (a) as high, if not exceeding, those expected in the
marsh. Any sacrifices in simplicity or economy incurred by following
such a route are offset by the preater generality and width of applicabllity
of the model.

As seen from Table 2.2, these desired attributes are generally not
met by previous canopy flow models. The analytic solutions, i.e. those
of Inoue, Cowan or Landsberg and James, contain too many limitations to
be useful for the application considered here. The numerical models of
Kondo, Wilson and Shaw, and Lewellen and Sheng do not consider the
presence of a free surface. More importantly, they all rely on an
algebraic prescription of the turbulent length scale, do not generally
account for the influence of obstructions on the near-wall turbulence
structure, and, from the available literature, do not seem to have been
very well compared against experimental data. The same criticism applies
to Reid's model.

The inability of previous canopy models to meet the objectives of
this study prompted a search for an alternative approach to closing the

momentum equations. The chosen method is discussed in the next chapter.
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CHAPTER III1

MODEL FORMULATION AND VERIFICATION

3.1 Introduction

The last chapter developed the governing momentum equations for
obstructed flow, with special attention to tidal marsh conditions.
Reviewing previous obstructed flow models, it was concluded that the
methods used to parameterize the turbulent stress terms do not generally
meet the objectives of this study.

Looking for an alternate way to parameterize the turbulent stresses,
it was decided to use a two-equation k-¢ low Reynold's model. This
technique accounts for the influence of diffusion on the turbulent
scales, requires no a priori specification of s and takes account of
near-wall viscous effects,

This chapter begins by reviewing the concepts behind the standard
k- model, followed by a development of the modifications allowing the
model to handle flow through vegetation, or other obstructions. Next,
the numerical solution method is described. Finally, model verification
is provided by comparing numerical solutions to analytical and experimental

results.

3.2 Governing Features of k-¢ Model

The k-c¢ model, proposed by Chou (1945), Harlow-Nakayama (1968), and

Jones-Launder (1972), parameterizes the turbuleﬁt shear stress using a
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conventional eddy viscosity technique, whereby

be Uy, %Y
—uiuj ——-CE;; + Bxi} (3.1)

Following the practice of earlier workers (e.g., Emmons, 1954), the
turbulent viscosity ut is taken as being uniquely determined by the
density, turbulent kinetic energy k = %-uiui and a turbulent length scale

2, in the form

¥ = pk1/2£ (3.2).

At high Reynolds' number, £ may be related to the turbulent dissipation
rate € by (Tennekes & Lumley, 1972)

3/2
£ =0 k
noe (3.3)

where Cu is a constant. Substituting this expression for & into (3.2)

yields the important final result

k2

The turbulent kinetic energy k and the dissipation rate £ are determined
by differential transport equations, as discussed in the following
sections.

The distinguishing feature of the k-¢ model is the way in which
it determines £. Other researchers, all starting from (3.2), have
proposed different ways of determining the length scale £, resulting
in different sets of transport equations. These models are reviewed by

Launder and Spaiding (1972). The dissipation equation approach for
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finding £ has become popular, owing largely to the relative ease with

which the e equation is derived (Rodi, 1981).

3.2.1 The k Equation

An exact equation for k can be derived from the Navier Stokes

equations (Hinze, 1975). For high Reynolds number flow thie equation

reads
| . ) a aul aui
p = = [pul( +4+9)] - pulul - ¥
dt 9% 1Y 2 P ij ox ax, 9
1 3oy 3 %
convective diffusive Pslproduction € = viscous
flux transport digsipation

(3.53)
The total derivative of k is balanced by diffusive transport due to the
velocity and pressure fluctuations, the production of k by the interaction
of Reynolds stress and mean velocity gradients, and the dissipation of k
by the actiocn of viscosity.

Before this equation can be used in a turbulence model, some

approximations must be introduced for the unknown turbulent correlation
appearing in the diffusion term. Analagous to the diffusion term for

momentum, the rate of transport of k is taken as

) ulu! R u
v 11 ,p'y _t 3%k
pui (5= + ) ) - (3.6)

=

where o is an effective Prandl number for the diffusion of kinetic
energy. With this approximation, and the eddy viscosity expression for

uiu', the modeled form of the k equation becomes
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Dk 3 e ek i i i
p o= —(—=) +u_( + ) - pe (3.7)
dt axi Ok Bxi t axj Bxi ij

3.2.2 The ¢ Equation

The dissipation equation as it appears in the k-t model was first
developed and used by Hanjalic (1970); his derivation starts with the
fact that for high Reynolds number, locally isotropic flow, the rate of
dissipation can be shown to be equal to the product of the molecular
kinematic viscosity and the fluctuating vorticity (Hinze, 1975). Next,
the Navier Stokes equations are manipulated to produce an equation for
the fluctuating vorticity, and thus for the dissipation rate. Finally,
modeling assumptions are made to express the higher order turbulence
correlations in terms of known gquantities, similar to what was done for
the exact k equations. These model assumptions are fairly involved and
will not be discussed in detail here. The end result, shown below, contains
terms representing the rate of change, convection, diffusion, and genera-

tion of vorticity due to vortex stretching, and viscous destruction of

vorticity.
u C.e C.c2
De _ _3 't 3e 1 _ 2
P T T 3x (0 ) T e B e (3.8)
i7e i
Convective Diffusion generation—destruction
Flux

Operationally, (3.8) serves not as a transport equation for dissipa-

tion, but rather for a quantity that scales with k3/%&; in essence, it is

an equation for determining 2%.
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3.2.3 Constants

The values of the constants appearing in the k and € equations were
determined from experiments, as discussed in detail by Hanjalic and
Launder (1972). Briefly, Cu (.09) was determined from the requirement
that in a constant stress layer'J% = (.‘.u]'/2 (see Section 3.2.5); 02(1.92)
was determined by reference to tﬁe decay of grid turbulence; and 01(1.44)
was chosen so that von Karman's constant equals .42. The diffusion
coefficients 0y and ¢ _ were assumed to be close to unity, and were

determined by computer optimisation with a variety of free shear flows

(Launder et. al., 1973).

3.2.4 Applications

The form of the k-€ model given above (i.e., with fixed constants)
has been applied with good results to many kinds of flow, including 2-D
wall boundary layer (Jones and Launder, 1972), duct flows (stephenson, 1976),
free shear layers (Launder et. al, 1973), and recirculating flows
(Gosman et. al., 1979).

Flows where this version of the k-¢ model has not given entirely
satisfactory predictions are (1) axisymmetric jets in stagnant surroundings
(Rodi, 1976), (2) flows, such as far field jets or wakes, where the
change in velocity across the flow is a small fraction of the translational
velocity of the flow (Launder et. al., 1973), and (3) thin shear flows
over curved surfaces (Launder, 1975). The reasons behind the lack of agree-

ment with experimental data for these cases are mentioned at the end of

Section 3.3,

50



3.2.5 Inferences from Near Wall Turbulence

In the vicinity of a wall the convection and diffusion of
turbulent kinetic energy will be small, leaving a balance in the kinetic

energy equation (3.7) between Fyjand e, or

3/2
du, 2 Lk
He G =PC T _ (3.9)

where Vv has been set to zero for simplicity. Multiplying the left hand

gide of this expression by Moo and the right-hand side by pkllzz, leads
to the result
2 :
LIS (3.10)
02 u

This relationship between T and k is borne out by experiment, with the
ratio (‘U’Pk)2 being found to be .09 in fully turbulent flow.
Another useful relationship can be had by eliminating k from the

dissipation term by introducing the definition of u £ glving

T= G G2

which may be recognized as the mixing length hypothesis, where the

mixing length is seen to be equivalent to Ch_llhp,. This derivation shows
why the mixing length model is referred to as a local equilibrium

model, as it is the form to which the kinetic energy equation reduces

when diffusion and convectlon are neglected, implying that k is both

produced and dissipated at the same location.
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3.3 Viscous Effects

The form of the model presented above applies only to fully
turbulent regions; close to a solid surface, or other interface, the
Reynold's number will become low emough for molecular viscosity to be
important. Although this viscosity-affected region may be several
orders of magnitude smaller than the total flow depth, it is nonetheless
important, since a large fraction of the total change of a variable may
occur in this reglon. The complexities of the viscosity-affected region
may be avoided by utilizing the fact that, for many turbulent flows,
the near-wall variationof the mean turbulent quantities are functions
only of the normal distance from the wall (provided the variables are
non-dimensionalized by the wall shear stress, the density, and the fluid
viscosity). These universal patterns, called wall functions, are
determined empirically. Thus, in making flow calculations, the first
grid point of a finite differénce grid on which the flow 1s to be
computed is chosen so that it's distance from the wall is just above
the viscosity-affected region. Boundary values of the dependent varlables

u, v, k and ¢ at this point are then determined from the wall functions,

given by Launder and Spalding (1973).

The wall functions, however, are not sufficiently universal to be
used in all situations: severe streamwise pressure gradients, steep
property gradients, the influence of buoyancy or body forces — all
these may substantially disturb the near-wall flow. Accurate predicitiouns

of such flows preclude the wall functions mentioned earlier; instead,
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the finite difference calculations should be carried out through the
viscous layer right down to the wall. Jones & Launder (1972, 1973)
expanded the capabiliﬁy of the k-¢ model to include viscous effects.
The complete form of their model is given in Table 3.1, in which Rt
denotes the turbulent Reynolds number (szvé) and Cu“ and sz are the
values assumed by Cu and C2 in the fully turbulent region, i.e., the
values given in Section 3.2.3.

The set of equations in Table 3.1 differ from the high Reynolds number
form of the k-¢ model in four major ways: these are

(1) dinclusion of viscous diffusion of k and &

(2} replacement of ¢ by £ as the independent variable in the

dissipatien equation where

sk 1/2
x4

-~

g = e-2k (

)2 (3.13)

This change was motivated by computational rather than physical
reasons. Measurements show that &£ is approximately constant very near
the wall, i.e., forfgf-< 5. This suggests a no~flux boundary condition
for the E equation. Jones & Launder (1972), however, could not get this
approach to work, so instead they decided to replace ¢ by &, letting
£ go to zero at the wall, and introduced into the k equation the extra
term shown above, which is equal td the dissipation rate in the immediate

vicinity of the wall (Jones & Launder, 1972). Away from the wall, the

term goes to zero.
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3

1/2

U u, au au
Dk _ 3 (.t ak 1,°71 .74 " ak ‘-2
== = — =+ w1+ u =+ 520 - et = 2u( )
dt axj Uk ij Tt axj axj 3xi ij
(3.12a)
u C.2  su, Bu, 3du ¢ ¢
Dg ] t & 1 i 1 i %,
P ot w 1+ —=—[u G=+5)1 -0 =
dt axj OE axj k't ij axj Bxi k
(3.12b)
u+u 2u
+ 2 t (3 i )2
b Axy0xy
2
= fﬂﬂiﬂ_ (3.12¢)
He " P T ¢
where,
¢, = € exp(—2.5/(1+Rt/50)
C, =0C, (l-.3e —R?)
2 2% - KPRy
R, = kz/vﬁ

Table 3.1

Standard Low Reynold's Form of the k-¢& model
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(3) Dependance of Cl_l and C, on the turbulent Reynolds number R,
(=2 /2).

The functional form of the dependencies was determined experimentally;
Cu was determined by considering constant stress Couette flow: 02 by
snalyzing the decay rate of isotropic grid turbulence (Jones and Launder,

1972).

(4} Addition of an extra term on the right-hand side of
the & equation.

There is no physical argument for this term's adoption; it was
included to produce satisfactory variation of k with distance from the
wall.

Equations (3.12) represent the standard, low Reynolds number k-e¢
model as developed by Jones & Launder (1972, 1973). It has been
extensively studied by many researchers, and found to give good agreement
with experimental data for a variety of different applications, such as
equilibrium sink-flow boundary layers (Jones and Launder, 1972), flow
on a spinning disc (Launder and Sharma, 1974), and prediction of heat
transfer coefficients on the pressure surface of a turbine blade (Turmer,
1971). Classes of flow not adequately predicted by the model are
strongly heated flows, and flows with large gradients of fluid properites
(Launder, 1976).

It should be mentioned here that Jones and Launder's model assumes
an hydraulically smooth surface, and takes no account of boundary
roughness, or large obstructions like canopy elements. The effect of

flow obstructions such as marsh grass is covered in the next section.
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3.4 TInclusion of Obstructions in the Low Reynold's Number Model

The presence of obstructions in the flow field will affect the
generation, transport, and destruction of the turbulence quantities,
requiring modifications in the standard low Reynold's Number form of the
k-¢ model (Table 3.1). Including these modifications, the complete
and final form of the turbulence closure model used in this study is
given in Table 3.2,

Comparison of this set of equations with Table 3.1 reveals several
basic differences; these are

(1) neglect of acceleration (D /dt) and horizontal gradients.

For typical marsh flows, as discussed in Chapter II, the ratic of
ﬁhe length scale in the horizontal direction (L) to that in the vertical
direction (H) will be on the order of 103—104. It follows from this that
the longitudinal and lateral variations of a variable will be small
compared to the vertical variations (i.e., g%->> é%—, g%)

The total derivative terms D /dt may be shown to be small by
comparing them to the diffusive transport terms. As was done in the

momentum equation analysis, no reference will be made to the drag

related terms, The order of magnitude of the various terms can be

estimated as
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.01R C.,a
2l ¢ _d® 2 2.3/2
0- az[(ok ) ]+u [( )+(az) ] +p 1+‘01Rt 2 (v}
Ps Pd
(3.14a)
1/2
- p¥ - ZH(N;Z )2
ot czaz
b2t [( )2+ o )21
C 2
_ vk
My =P P z (3.14¢)
(L+C'—=)
where
_ _ 2
C, cw exp{—2.5/(l+Rt/50)] C, = Czw (1.0-. 3exp Rt)
Ci = 02/C c' = 2.6
L2
Rt = k" /uE
Table 3.2

Modified Version of Low Reynold's Number k-e Model
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where v is the order of magnitude of the turbulent fluctuations, and U
is the characteristic velocity scale. Many of the above approximations
were drawn from Tennekes & Lumley (1972), as was the exact form of the
transport term for the dissipation equation (Note that, for isotropic
turbulence e = ¥ (a%) ).

The ratio of the diffusive transport to uialaxi is (%-%). The
value of*% may be roughly approximated from the friction factor
expression, givingﬁﬁbgf v .1, as discussed earlier. The value of

3
(%-%) then becomes about 102 (with L = 10 m), large enough to justify

neglecting the convective terms.

UT -1UT

The ratio of the diffusive transport to 3/8t is 5 VR

Using the values of U, H, and T given in Table 2.1, this ratio is seen
to be greater than 10, with the exception of Case 3C; as discussed
earlier, the short duration of this case (~ 10 sec.) allows it to be
ignored. In general, then, the unsteady terms may be neglected compared

to the diffusive transport terms.
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The physical significance of these approximations is that the
vertical turbulent structure is steady, and establishes itself quickly
relative to horizontal changes. Similar considerations in Chapter II
led to the neglect of the Dui/dt terns, .

(2) addition of terms representing the production of turbulent
kinetic energy by obstructions.

The total production of turbulent kinetic energy (P) is now

C.a
QU2 | BV, 2 LO1Ry PRS2 2.3/2
P = “Jéi? iyl By 1+.0IR,_ 2 (u™+v")
Ps Pd

where the first term represents production of k due to shear (PB) and
the second production due to obstructions (Pd). The factor Tig%%%f is
added to force Pd to zero in the viscous zone at the water surface. In
the main flow, where Rt is high, this factpr approaches one.

The term P given above appears directly in the k equation; before
being used in the & equation, Pd is multiplied by the factor ciwczfcl.
This ratio was chosen so that the dissipation equation would be in
balance under conditions of uniform obstructed flow, in which all vertical

gradients are zero. (This might happen, for instance, in flow through

infinitely long cylinders, driven by a pressure gradient). The k equation

under these conditions reduces to a balance between Pd and &; the dissipation
c,2 czpz2
——— 1 T —r———— =

equation becomes —- (ClPd) ” , which is in balance 1if ] C2/Cl.
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(3) addition of a term reducing the effect of k on L
The motivation behind this alteration can best be explained by

considering fluid flow past an idealized, vertically oriented obstruction.

Most of the eddies produced in the wake of this element will have vertical

vorticity; while adding to u' and v', they will have relatively less of

an effect on w'. This idea is corroborated by investigations of Seginer

(1976) and Shaw et al (1974), who found that u' > v' > w' within

the canopies they studied. The effect of this is that, while the

obstruction- produced eddies contribute to k (via u'u' and v'v'), they

contribute relatively less to u'w' shear, and to the vertical

diffusion of turbulence. To reduce the effect of k on M the following

tl

relationship was proposed,

C k2

= - B =

He = p P, E
(4G i)

where CL = 2.6 was determined by trial and error to give'the best fit
to experimental data from four laboratory studies of obstructed flow,
discussed in Section 3.7.2. Figures 3.1 and 3.2 show the results of
two of these studies, conducted by Plate (1965) and Thom (1971) in a
wind tunnel. The motion within the obstructions is driven by energy
diffused downward from the top of the canopy. At any level within the
canopy, some of this energy is expended in overcoming the drag forces.
Also shown in Figure 3.2 are model predictions made with CL =0, 1.3,
2.6, and 3.9. The reasons bshind the different shapes of the velocity

profiles are given below.
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As seen from the above expression, 1, varies inversely with q:,

t
other factors being kept constant, For C]; equaltoCGor 1.3, k confributesa

relatively large amount to ¥,. The resulting large values of v, imply

t
a higher level of turbulence, and thus more downward diffusion of

energy; since this energy drives the flow, the velocity profiles
within the canopy are larger, and more uniform, compared to the pre-
dictions made with higher values of CJ. In these cases, ut is
relatively smaller, and there is less downward diffusion of emergy;
subsequently, the stress, as well as the velocity, attenuate more
quickly in the canopy. This is especially true near the top of the
canopy, where the larger gradients affect the profiles above, as well as
below, the level z-hg. These trends are seen in Figures 3.1 and 3.2.
Above the obstructions, Pd is zero, and u. reverts back to the
form proposed by Launder and Spalding. At z=hg, where Pd changes
suddenly to zero, Me increases sharply; for the case with C; = 2.6,
e changes by a factor of about six between the two grid points lying
just below and just above the top of the obstructions. (All other
variables, u, v, k, € and T change smoothly in this region.)

1/21, this sudden, discontinuous, change in

Remembering that u, = k
Mo implies a correspondingly zbrupt change in the turbulent length scale
(). On physical grounds, one would like £ to be a continuous function of
height. Still, however, it is possible to argue that, by drastically
altering the flow environment at z=hg, equally drastic changes may be

induced in 2. Additionally, if the vegetation density (a) goes gradually

to zero, P, will also change gradually, as will 2.

63



The wvariation of ut proposed here has extended the range of
applicability of the k-e¢ model. Differemt fumctions for u, have been
put forth by other researchers to obtain more acceptable predictions
with certain kinds of flows. One such function was introduced by Rodi
(1972) for flows, such as far field jets or wakes, where the velocity
differences across the flow are small compared to the free stream
velocity, and where the turbulence is weakly strained by the mean flow.
Correlating the experimental data, Rodi proposed a function Cu=g(P/e)
whichwas found by others (Launder et. al., 1973) to significantly
improve the predictions over those obtained by using the standard
high Reynold's form of C" {(i.e., Cu = .09).

The reason why C]1 = ,09 did not work well in these cases can be
traced to the fact that this value was chosen on the basis of
experiments in which the production P and dissipation ¢ were in
approximate balance. For the types of flow mentioned above, P/e 1s
much less than unity, requiring different values of Cu. A detalled
analysis of the conditions under which Cu = .09 is given by Rodi (1975).

At this point, the model formulation is complete. Before proceeding
to the boundary conditions, and the numerical solution scheme, some
discussion will be given concerning the limitations of the k-e approach
as it relates to the objectives of this study.

One limitation of the model is that it is unable tv account for
bottom roughness, which is equivalent to saying that an hydraulically
smooth surface is assumed in all calculations. For most situations

involving obstructed flow, however, it seems likely that this will notbe a
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very serious concern. In contrast to non-obstructed flow situations,
such as open channel flow, where most of the turbulence is generated
at the bottom, and then diffuses upward, mmch of the turbulence in
obstructed-flow cases will be generated in the main flow region, and then
diffuse downward. Thus, it seems probable that the near-wall turbulence
will be dominated by downward diffusion from above, and will be
relatively unaffected by the bottom roughness.

A second limitation of the model is that it assumes the local
state of turbulence can be characterized by one velocity and one
length scale, and that the Reynold's stresses can all be related to
these scales by an eddy viscosity expression. This relation often implies
that the transport of the individual stresses is not adequately accounted
for, even if the transport of the characterizing scales are (Rodi, 1981).
In particular, the model can not distinguish between shear and wake-
generated turbulence. As noted by Thom (1981), the wake produced
turbulence will have a length scale on the order of the size of the
obstructions, which will usually be smaller than the characteristic
length scale of the shear generated turbulence. The wake generated tur-
bulence is thus more quickly dissipated into heat (the dissipation rate
being inversely proportional to the length scale), and so is short-
lived in the canopy environment, having less effect on the total canopy
rurbulence. The model takes no account of this phenomenon.

To the author's knowledge, there is no existing canopy model that
handles this effect, owing largely to the difficulties inwvolved in

separately treating the dissipation generated by the obstructions.
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Wilson and Shaw (1976) note that a model including separate treatment
of wake generated turbulence would provide a better understanding of
the processes governing the interactions between the fluid and the
obstructions, but would not likely produce major changes in the calculat-
ed flow fileld.

Allowing for more than one turbulent length or velocity scale
would require a higher order model, involving transport equations for
the individual turbulent stresses, with each new equation intreducing
additional turbulent correlations to be simulated. Launder and
spalding (1972) state that, in general circumstances, a length scale
equation is needed more than transport equations for the individual
Reynold's stresses. The complexity of these higher order models, and
the uncertain benefits in accuracy for obstructed flows, made them seem

inappropriate for the purposes of this study.

3.5 Boundary Conditioas

Figure 3.3 shows the two basic flow regimes (free surface water flow
and overlying air flow) found in marsh flow applications. The primary
interest in the air flow is to predict the wind stress (1) at the air-
water interface. Each of these regimes has its own boundary conditions.
For the free surface flow, the lower and upper boundary conditions

are
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@ z=0 (3.15a)

k=e=0
du
S @ z=h (3.15b)

Tx

_&ﬂ'[

H
dz ¥

For the alr flow, the upper boundary conditions are

us=1U
a
v = V T
a @z =h_ (3.16a)
& _ o dk_
ut dz e dz

where Ua and Va are prescribed velocities at some reference height ha'

The lower boundary conditions are

u="1u
W

v = Vw @ z'=0 (3.16b)

k=20

mi
Il

where Uw and Vw are the velocities of the water surface. For virtually
all practical applications, Uw and Vw will be at least an order of
magnitude less than the velocities in the air, allowing U, and Vw
to be set equal to zero. This greatly simplifies the calculations,
avoiding the need for iterating back and forth between the air and water
flow computations.

The boundary conditions may be altered as the need arises; for

instance, in a wind tunnel study, the same boundary conditions
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(u=v=k=§=(0) may be applied at both upper and lower surfaces. If warranted,
"as for example In computing the wind stress in a case where the grass is
completely submerged beneath the water surface, recourse may be had to the

wall functions described earlier.

3.6 Solution Technique

Having arrived at the model equations (3.14), it remains to
devise a method for solving them numerically. The equations have the
simplifying feature of being one-dimensional: on the other hand, they
are complex, inter-linked, and non-~linear, making them hard to evaluate
numerically, prone to instability, and requiring an iterative solution
technique. A finite control volume approach was decided upon as the best
way of discretizing the equations. This approach is developed by

Patanker (1980), from which much of the following discussion is taken.

3.6.1 General Discretization Equation

The differential equations of the model may all be cast into

the general form

L ahH+s=0 (3.17)

where T is the dependént variable, T is the diffusion coefficient, and
S is a source term, This is an important time-saving step; as a
consequence, It is only necessary to be concerned with the numerical
solution of (3.17); the equations for velocity, kinetic energy, and

dissipation are particular cases of (3.17), with different forms of T
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and S, and with appropriate boundary conditions.

Equation (3.17) 1is solved numerically using the control volume
approach, whereby the calculation domain is divided into a number of
non-overlapping control volumes, each of which surrounds a single
grid point. The differential equation 1s integrated over each control
volume, resulting in a set of linear algebraic equations that are
then solved simultanecusly.

To derive the discretization equation, consider Figure 3.4,
showing a single control volume (dashed lines) surrounding a grid point
P, with neighboring points U and D. Integrating (3.17) over the control

volume, of unit depth and length Az, leads to

rdr rdr = .
( dz)u - (—-('i;)d + 8 Az =0 (3.18)

where S is the average value of S over the control volume.

5 may be a function of the dependent variable T, and it is then
desirable to incorporate this dependence directly into the discretization
equation. Only a linear dependence is allowed, because as will be
gseen later on, the discretization equations will be solved using the

techniques of linear dhgebraic equations. S is linearized in the form
§=8 + 8T (3.19)
c p P
where Sc is the constant part of S, and Sp is the coefficient of TP.

Evaluating %ﬁ}-with a linear profile, and using the above expression

for S, (3.18) becomes
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r(T-g) r(g-T)
u _d D .
(5z)u (62)d + (Sc + spr) Az 0 (3.20)

or, rearranging

aBTP = aUTU + aDTD +b (3.21)
where
ru

= 9
T (s2), (3.22a)

U fa
ap (az)d (3.22b)
aP=aD + aU—SP Az {3.22¢)
b =S5, Az (3.224)

Equation (3.21) is the final form of the discretization equation
for the control volume surrounding point P. The coefficients in the
discretization equation contain source terms Sc and Sp, as well as

conductivity terms Pu and rd. The method of determining these terms

is described below.

Treatment of Conductivity Terms

Inspection of (3.21) shows that T , T, represent the value of T

at the control-volume interfaces; typically, however, the values of

72



I will only be known at the grid points D, P, U. It then becomes
necessary to evaluate the interface conductivity, say Pd, in terms of
these grid point values. Followiﬁg the suggestion of Pantanker (1980),
the interface conductivities are found using the harmonic mean of the

neighboring points. Thus, for instance, Pd is given by

3T T
D (3.23)

Equation (3.23) assumes that the control voluem face 1ies halfway

between the grid points, which will be true for this study.

Treatment of Source Terms

When linearizing the source terms as 5 = Sc + Sp-Tp, gpecific rules
mst be followed in determining Sc and Sp if instabilities and
physically unrealistic solutions are to be avoided. Sp should be
less than or equal to zero, because only then will the coeificient
ap be always-positive. This is one of the paramount rules of the
control volume approach; all coefficients ay aps 3, myst always be
positive. Pantanker (1980), explaining this rule, states

"Most situations of interest here will be such that the value
of a dependent variable at a grid point is influenced by the
values at heighboring grid peints only through the process of
convection and diffusion. Then it follows that an increase
in the value at ome grid point should, with other conditions
remaining equal, lead to an increase, and not a decrease, in
the value at the neighboring grid point. In (3.21) if an
increase in Ty must lead to an increase in Tp, it follows that
the coefficients ay and ap must have the same sign. We can,
of course, choose to make them all positive, or all negative'.

73



A second rule for physically realistic solutions 1s that Sc be
positive in the discretization equations for kinetic energy and
dissipation. The physical interpretation of k and & requires that their
values be positive; to ensure this, the appropriate values of Sc must be
always-positive. As a general rule, positive values of Sc in the
discretization equation for a dependent variable T guarantee that no
negative values of T will arise in the solution. Since negative values
of velocity are allowable, at times even desirable, this requirement
does not apply to the momentum equation.

This section has outlined the general rules used in linearizing
the source terms; the explicit relationships for Sc and Sp appropriate
to the different model equations are shown in Table 3.3. From this
table, it is seen that for all equations SP is less than zero; for the
kinetic energy and dissipation equations, Sc is greater than zero, while
for the momentum equation Sc may be either positive or negative,

depending on the sign of'g%

3.6.2 Boundary Conditions

Consider Figure 3.5, showing a string of grid points. A
discretization equation like (3.21) can be written for the control

volumes surrounding the internal points (I, D, P, U). The end points
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Figure 3.5 - Sample Calculation Domain
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B and E require special attention, as it is through them that -the
boundary conditions enter the numerical scheme. There are two kinds of
boundary conditions encountered in this study: (1) T specified, and
(2) flux of T specified. For the rest of this discussion, attention
will be focused on the lower boundary B.

If TB is specified, no additional equations are required. If the
flux 1s specified, an additional equation is needed for TB' This is
achieved by integrating the differential equation over the "half"
control volume, an enlarged view of which is shown in Figure 3.6.

Proceeding along the lines of the last section leads to

ry (Tg~Ty)
- — +8 . = .
g (62)1 + (Sc Sp TB) Az = 0 (3.24)
rdT <
where gp = = "E;)B is the boundary flux. Rearranging this expression
into the standard form gives
T, =aT_ +b (3.25)

where
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Figure 3.6 - Half Contrcl Volume at Boundary
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T

ay = Tgijz‘ (3.26a)
b = Sc'Az + qp {3.26b)
ap = ap - Sp'Az (3.26¢)

In this manner the discretization equations for the boundary grid
points are constructed; combining these equations with those for the
internal grid points gives the required number of equations for the
unknown variables. The equations are nominally linear and tridiagonal -
as such, they can be solved directly using the Thomas algorithm

(Pinder and Gray, 1977).

3.6.3 Grid Spacing

It is not necessary that the grid points in Figure 3.5 be
equally distant apart; indeed, there are decisive advantages for not
having uniform grid spacing. Near solid surfaces, or other interfaces,
where the variable gradients are steep, a finer grid spacing is needed
than in the main flow region, where the gradients are relatively
smaller. A variable grid scheme provides efficlent use of the program's
computing power, deploying it to those areas where it is needed most.

There are no universal rules concerning the correct spacing of
adjacent grid points. The scheme used in this study was to start

out from the wall using a certain grid size (Azw), doubling or tripling
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the grid size every five steps until some maximum grid size
(Azmax) was reached. The size of Aamax was about .05m for water flow,
and about .25m for air flow.

Proper resolution of the viscous sublayer was found to require
very small values of Azw, and consequently large numbers of grid points.
For typical marsh flow, as an example, the turbulent Reynold's number
Rt becomes equal to one at about z=.1310-3m. Assuming 10 grid points
are needed to resolve the zone between the point and the wall, Az,
must be about .lx10-4m. With this value, and Azmax=.05m, 137 grid
points are necessary to cover a .20m water column, with a viscous
zone at each end.

The need for so many grid points is one of the less desirable
features of the model, and one in which more work would be useful.

It is possible, for instance, that the value of Azw could be relaxed,
without a disproportiomate loss of accuracy in the solutions. Ideally,

the viscous zone could be avoided by developing wall functions similar

to those discussed earlier for non-obhstructed flows.

3.6.4 Outline of Solution Scheme

The model equations are solved using an iterative technique.

The steps of this process are:

(1) Guess, or estimate, the value of the dependent variables

(u,v,k,E,pt) at all grid points.

Obviously, the closer the initial guess to the final results, the

less work involved in reaching a solution. If the initial guess is
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too far off, the whole process may diverge. Where possible, it is
recommended to use as an initial guess the solution to a previous run,
similar to the one being studied. If no such numbers are avallable,
realistic profiles of the variables calculated analytically should be
used. In the presence of grass, where gsuch profiles may be unknown,

a good idea is to start out by solving a no-grass case having the

same geometry and forcing functions; using these solutions as an initial
guess, the grass is then introduced by stages, the output of one stage
forming the input of the next stage, until the final results are

obtained.

(2) Using the guessed values, solve the model equations to get

new values of the dependent variables.

Following the principles outlined in Section 3.6.1, the differential
equations of the model have now all been cast into nominally linear form.
The coefficients of these linear equations are calculated using the
estimated values from step one. The nominally linear algebraic equaticns
for one dependent variable at a time are then solved using the Thomas
Algorithm. The discretization equations for k .and €& are solve&'twice for
each calculation of the velocities (u,v); this slows down the rate of

change of k and &, thus helping to prevent instabilities.

(3) Under-relax the new values of the dependent variables.

This is a crucial step in the solution scheme. By slowing down
the change, from iteration to iterationm, in the wvalues of the
variables, under-relaxation helps to avoid divergence., The general

under-relaxation scheme is
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T=oa - Tnew + (1~a) - Told (3.27)

where o is the under-relaxation factor, T and T are the old and
old new

new values of T, respectively. Gosman (1976) suggests using a in the

range .5-.7. A commonly used value in this study was a = .75. The

importance of under-relaxation can not be overstated. 1f all the

variables (u,v,k, E,ut) are not under-relaxed after every iteration,

numerical instabilities will inevitably result.

(4) With the under-relaxed variables as better guesses, return
to Step (2) and repeat the process until further iterations

produce no significant changes in the values of the dependent

variables.

The iteration process is terminated when some convergence
criterion is satisfied. Following the suggestion of Pantanker (1980),
convergence is monitored by examining how perfectly the current values
of the dependent var;ables satisfy the discretization equations. For

" each grid point, a residual R can be defined as

R = aPT ]TU - aDTD -b (3.28)

P %
Obviously, when R is zero, the equation is completely satisfied. The

criterion used in this study is to require R to be less than some small

percentage of aPTP’ which will generally be the biggest term on the right-

hand side of (3.28). The convergence criterion can be written as
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1.

(3.29)

A value of eps = .00l was found to yield good agreement with analytical and
experimental results, without requiring excessive 1terations.

An alternative procedure to measuring the percent change in R would
have been to monitor the magnitude of R, requiring it to be less than some
small number. Accurate specification of this number would depend on the
physical circumstances, which would likely change from one problem to the
next, requiring recalculation of the convergence criterion number. This

problem is avoided by using a percent change approach. N

3.7 Model Verification

The computer program, having been written and coded, was tested by
comparing numerical solutions against analytical and experimental results.
As a first step, non-obstructed flows were examined, as they were the
simplest, and best understoed. These comparisons served to determine
whether the model equations were being solved correctly, and to evaluate
the convergence formulation.

The next step in the verification process was to examine obstructed

flows. The goals here were to determine the empirical coefficient CL
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(discussed in Section 3.3), analyze the correctness of the model

idealizations, and their applicability under natural conditions.

3.7.1 Flows without Obstructions

Open_Channel Flow - Smooth Bottom

The first case considered here is that of water flowing down a
smooth slope. Figure 3.7 shows the physical set-up, along with plots
of u/u,as predicted by the model, observed by Nagakawa et. al., (1975)

and determined analytically using the formula (Schlichting, 1968)

u ULz
;; = 2,5 &n ( - } + 5.5 (3.30)

This relationship, although derived for the region close to the wall,
has been found to approximate the velocity throughout the
channel depth. The friction factor for smooth surfaces at large
Reynolds numbers is (Schlichting, 1968)

L 2 2 1og(r-YD) - .8 (3.31)

13

where U = average channel velocity, R=Reynold's number'(R=$§m), h=channel

depth, and f = friction factor (f=8(u*/U)gl The value of f cal-
culated using the above formula and that predicted by the model are

.015 and .016, respeptively (R=3-105),

In Figure 3.8 dimensionless profiles of k and € predicted by the
model are compared with experiments for developed open channel flow
by Nagakawa et; al., (1975). The good agreement reconfirms that the

model equations are being solved correctly.
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Couette Flow

The second non-grass flow case examined was plane Couette flow in
a smooth channel. Model predictions were compared against the
experimental data of Robertson (1959). Figure 3.9 shows the observed
and predicted values of u/u, against depth. Since the velocity profile
is symmetric about the chamnel center-line, only values for half the
channel depth are given. (The fact that the computer program exhibited
the expected symmetry is in itself one check of the program). The

observed and predicted values of the friction factor f are .0187 and

.0183, respectively.

3.7.2 Obstructed Flow Studies

The next step in the verification process was to look at
obstructed flow experiments. A review of the literature turned up
numerous investigations of flow in canopies, conducted both in the
laboratory, and in the field. Owing to their more controlled nature,
the laboratory studies were used to determine the empirical coefficient

CL. Once determined, the value of this coefficient was held constant

in all subsequent work.

Labeoratory Studies of Canopy Flow

Four laboratory studies were examined; three were conducted in
wind tunnels, the fourth in a water flume. Table 3.4 gives the physical
description of each experiment. For Kouwen's water flume (1969) study,
u, k, and § were set to zero at the bottom of the flume; at the surface,

1, k, and § were set to zero. For Plate (1965) and Thom (1971), u, k,
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and & were set to zero at the top and bottom of the wind tunnel.
For Seginer (1976), the upper boundary conditions were changed, in
that the fluxes of the variables were set to zero at z=.533m, where
du \

— was given to be zero.

dz
A pressure gradient was assumed to drive the flow in the three

wind tunnel studies. Seginer (1976) claims to have made g% = (0 by
adjusting the wind tunnel ceiling. Nonetheless, the variation of shear
stress above the canopy 1s linear, as it would be in pressure driven
flow. Seginer maintains that this is due to convection, implying that
the flow decelerates as it moves down the tunnel. Whether %ﬁ is
actually zero is not certain; the velocity and stress profiles are
very similar to those expected in pressure driven flow, and this is

what was assumed. Neither Plate or Thom make any reference to this

matter.

The values of ¢, used in the model predictions for Thom and

d
Seginer were those determined experimentally by the authors. The
factor of 1/3 in Seginer's estimate of Cq way be interpreted as the
ratio of the drag coefficient measured in situ within the canopy to
that measured for a single elementin an equivalent umiform wind. This
ratié is commonly called the shelter effect, as discussed in Chapter
I1. The value of Cq used in Kouwen and Plate's comparisons were
taken to be that of a rectangular strip (Daily and Harleman, 1973).

A value of CL = 2.6 was found by trial and error to give the

best fit to the four data sets, as discussed in Section 3.4. Figures

3,10-3.13 show the observed and predicted velocity profiles for the
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studies. The profiles are in good agreement, giving confidence in
the correctness of the model structure.

In addition to velocity, stress measurements were also takem by
Seginer and Thom. Seginer measured the turbulent shear stress within
the canopy using a hot wire anemometer, the observed and predicted
results being shown in Figure 3.14, The sharp decline in stress
*ithin the canopy has important implications for the marsh; it
indicates that, in situations where the grass protrudes through the

water column, the wind stress at the alr-water interface will be

significantly reduced from it's value over the grass.

Thom measured the total drag force on the cylinders with a moment

hg €42
balance. Assuming that t = J — u dz, and that the bottom strass

2
0
is negligible, the drag force then gives an estimate of the shear
2
stress at z=hg. The value found by Thom in this way was .lln/m’,

as compared to .096 n/m2 predicted by the model.

Plate did not measure the stress directly, but estimated it from
the expression %; = ¢ in (ng); taking d=hg, he then fitted the data
above the canopy to determine z = .lhg and u, v .94 m/sec, compared

to a model prediction of .78. The discrepancy between the u, values

obtained from the model and the semi-log law approach is discussed in

the next section.

Seginer used a hot wire anemometer to measure the three components

of the turbulent intensity il’ 12, 13, where in general ij =V—§§2/u.

No error analysis was presented for these measurements. A summation

3
gives (%'.zl i;)l/2 = fﬁYu; the observed and predicted profiles of
J=
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this quantity are presented in Figure 3.15. From the cobserved values
of u, k was then determined, and is compared with model predictions

in Figure 3.16. Also shown, for z > hg’ are values of k derived from
the relation k = _LQ%E (values of 1/p were those given by Seginer,
which matched closely the model predictions). As discussed in Section
3.2.5, this expression applies when diffusion and convection of k are
negligible, leaving a balance in the k equation between production and
dissipation. The model predictions are seen to agree closely with the
values of k obtained anakytically using the above expression, whereas
the observed values are consistently higher. This suggests the
possibility of downstream convection of k in the wind tumnnel, or perhaps

upward diffusion from within the canopy by a mechanism not accounted

for by the model (see model limitations in Section 3.4).

Field Studies of Canopy Flow

In addition to laboratory studies, two field studies measuring
velocities in corn (Wilson & Shaw, 1977) and beans (Thom, 1971) were
also examined. Filgures 3.17 and 3.18 show the observed and predicted
velocity profiles for each of these cases. Figure 3.19 shows observed
and predicted profiles of T}ﬁl for Wilson & Shaw's study, where 7,

4 g
is the shear stress at the top of the corn crop.

The values of (a) used in the model predictions were determined
experimentally by the authors. The values of (Cd) were assumed close
to those predicted by the authors, and were determined by trial and
error. Thom estimated Cd=.07 using an analytic approach; Wilson &

Shaw found Cc=.04 by trial and error to give the best fit between the
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data and their model predictions. (In contrast to the laboratory
studies, where well defined wvalues of (Cd) were available for use in
the model comparisons, no such information was.available for the field
studies. The values provided by Thom and Wilson and Shaw did not seem
of sufficient accuracy to reguire their use in the comparisons.)

Following a simllar approach to Plate (1965), Thom estimated uy,
at the top of the bean crop to be about .35m/sec., as compared to 2
predicted value of .5. The difference in shear stress, which varies
as ui, is about a factor of two.

Without direct measurement, it is not possible to compare the
accuracy of these two stresses.The small (10%) difference between
the observed and predicted ui values of the laboratory studies, mentioned
earlier, lends some support to the k-e predictions. As noted by
Brutsaert (1982), the depth of the canopy sublayer may extend con-
siderably above z=hg, making it possible that many of Thom's measurements,
which extend a distance of 3hg above the top of the bean crop, may lie
within this sublayer, and are thus not governed by the semi-log law.
This is corroporated by the observation that using the semi-log formula
to find u, for Seginer's study, with his value of d=.14m, leads to a u,
of roughly 2.5m/sec., as compared to a measured value of about two.
Seginer's measurements also extended a distance of about Shg above the
top of the canopy.

Figure 3.2Q shows the observed and predicted profile of %ijor
Wilson and Shaw's study. The observed values were deduced from turbu-

lence intensity data given by Shaw et.al., (1976), in the same manner
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as described in the last section. Similar to the results found in the
laboratory study of Seginer (1976), the predicted values of #ﬁ?u are
consistently higher than the observed measurements. Both observed and
predicted profiles follow the shape of the vegetation density profile
(a). This trend, observed in other canopies (Thom, 1981) as well,
agrees with what might be expected; as (a) inmcreases, so does the
kinetic energy produced by the obstructions.

Examining the results in this section for velocity, stress, and
kinetic energy, the agreement between observed and model values is
generally not as close as that obtained for the laboratory studies.
The major reason for the relatively poorer fit in the field studies
can be traced to the presence of large, leafy surfaces in the bean and
corn crops of the field studies. The leaves will affect the physics
of the flow, and thus the model parameterization, in three major ways.

First, the leaves will exert drag on the flow through skin
friction, as well as pressure forces. This will require redefinition

of (a) to include surface area per unit volume, as well as reformulation

of Cd-
Second, the leaves may also dissipate kinetic emergy by skin
friction, requiring an additional sink term in the kinetic energy
equation. Lewellen and Sheng (1980) include such a term in their
canopy flow model.

Third, the movement of leaves in the wind may generate eddies

affecting the turbulent transport of momentum, as well as kinetic

energy., The value of C; in the expression for My was derived on the
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basis of the lab studies, having vertical obstructions that may have
bent over in the wind, but almost certainly did not move back and
forth, such as might be expected of leaves. This fluttering action
could conceivably produce eddies having different orientations than
those generated by vertical, stationary obstructions, thus requiring
modification of the C; term,

While inclusion of these effects would probably lead to better
results for crops such as beans or corn, they would not likely have
much of an impact on the modeling of marsh grass, which does not have
the large, leafy surfaces responsible for the phenomena described above,

and which is the major concern of this study.

3.8 Summaiy

The model presented here solves the momentum equations (2.8) for
flow through and above obstructions, using a modified two~equation k-¢
approach to parameterize the turbulent stresses. Turbulence closure is
achieved without the need for a priori specification of the turbulent
scales, these being determined by transport equations, in conjunction
with specified obstruction geometry, and other boundary conditions. The
model solves the equations through the viscous-affected regions near
solid boundaries or free surfaces, and makes no empirical assumptions
about the variation of mean or turbulent quantities in these regions.

The model formulation was tested by comparing numerical predictions

against experimental data from the literature. S§ix experimental studies
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were chosen for investigation. The empirical model coefficients were
kept at the same values in all predictions, thereby avoiding any
curve-fitting connotations associated with changing the coefficients
from one case to the next. Experimentally determined values of the
obstruction parameters (a) and (Cd) were used whenever possible.

The case studies can be divided into twe groups, those conducted
in the laboratory, and those conducted in the field. The laboratory
studies, being more controlled, were used to find the value of the
model coefficient CL, which was subsequently held fixed at a value of
2.6. Consisting of three wind tunnel studies and one water flume
test, the laboratory studies had varying model parameters, with the
obstruction based Reynold's number (defined in Section 2.4.2) varying
from 60 to 1000, and with (hga) ranging from .5 to 2.5. The model )
predictions agreed closely with observed measurements of veleocity and
stress; model predictions of kinetic energy were consistently high,
but correct within a factor of two.

In addition to the laboratory studies, two field investigations
of flow in a corn and bean crop were also analyzed. Despite the
complexities introduced by the presence of large, leafy surfaces, the
model predictions and observed results were generally in good agreement,
although not as close as for the laboratory studies.

In the next chapter the model is used to calculate the flow in
tidally inundated marsh grass, the numerical predictions being compared

with experimental results.
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CHAPTER IV

FLOW IN TIDALLY INUNDATED MARSH GRASS

4.1 Introduction

This chapter discusses a study by the author of flow in tidally
inundated marsh grass. After some general background information about
the area chosen for the measurements, a description of the experimental
apparatus is given. Next, the operating procedure followed on a
typical field day is outlined. A discussion of the experimental
results, together with an error analysis, is then presented. Finally,
observed velocity distributions are compared with predictions of the

numerical model described in the foregoing chapter.

4.2 Background

To investigate the flow in tidally inundated marshes, and to
provide a basis for model comparison, a field study of water movement
was conducted during the summer of 1980 in Great Sippewissett Marsh,
located outside of Falmouth, Massachusetts. Great Sippewissett has an
area of about one-quarter square kilometers, with a single entrance for
the tidal water. The tidal range is about one and one-half meters.
Figure 4.1 shows a map of the marsh, including the area chosen for the
field study.

An enlarged view of the study area i1s shown in Figure 4.2. This

location was chosen because it 1s surrounded on three sides by open
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water, thus allowiug.a net water flow across the study area during
flood and ebb tide. Thia situation was preferred to that found in
dead-end areas bordered by solid boundaries, where the water movement
would be more restricted. The contours in Figure 4.2 represent the
results of a topographical survey of the study area. The low-lying
regions in the center of the study area are continually filled with
water, support no vegetation, and are called pannes. Excluding these
regions, the vegetation of the study area is almost exclusively a type

of grass called short form Spartina alterniflora, ranging in height

from about five to twenty-five centimeters. In certain areas near the
creek bank, tall form Spartina, about one meter tall, can be found.
The study area 1s about forty meters long on each side.

During flood tide, the water level in the surrounding creeks
riges; if the tide is high enough, the study area becomes completely
innundated. With the turn of the tide, the water level starts to fall
until, once again, the study area is exposed.

It is during the period of tidal innundation that the field
experiments are carried out. Figure 4,3 shows the stations where the
velocity measurements were taken. Table 4.1 shows the sampling dates

of each station. At each stationm, profiles of velocity versus depth
were obtained by taking measurements at roughly five centimeter
intervals throughout the water column. Typically, several such
profiles were taken at each station, during both flood and ebb tide.

Depending on the tidal stage, the grass may have extended through the

111



*9PTL qqE PuU® poolg SuTINp MOTJ 3O UOTIDAITQ PIAILSqQ
2IEOTPUT SM0ILIY BRIy ADNIS UO S8IT§ JUSWLINSEal KITSUIQ
§SB1H puE sSUOTIEIS B[TFoad KITI0T2) JO UOTIBDO] - € *4 2IndTg

nol we .

T [ ] . 95
o WIS
YIUY AONLS LLISSIM IS | HOILYLS

B NOILYLS

IS ININIUNSTIN ALISNI] SSYHD :D
3011 993-3
aaw 00DV 4

112



Date Stations Sampled

8/29/80 1

8/30/80 2,3

8/31/80 4,5,6

9/1/80 7,8

9/2/80 9,10
TABLE 4.1

Velocity Measurement Stations and Dates Sampled
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water column or been completely submerged below the surface. In
conjunction with the velocity measurements, wind speed and stage height

at the boundary of the study area were recorded.

4.3 Experimental Apparatus

4.3.1 Flow—Metering Device

A measﬁring device suitable for tidally inundated marsh flats must
meet two basic requirements; (1) ability to measure low velocities (on
the order of .01 m/sec) in dense grass without disturbing the flow, and
(2) insensitivity to the presence of foreign material, such as detritus
or pieces of grass, in the water. These two requisites precluded most
conventional flow metering techniques of relatively low cost, and
prompted the design and construction of a special measuring device,
shown schematically in Figure 4.4. The device operates on a time-of-
travel technique: dye pulses, released into the water by means of a
solenoid pump, are photographed at intervals by a cameras; a digital
clock, located in the camera's field of view, provides a time scale. A
transparent grid, laid over the developed prints, provides a distance
scale with which to measure how far the dye has moved between prints.
The orientation of the clock, having been recorded in the field,
indicates the direction of flow relative to the study area.

The dye solution was prepared at the beginning of every field day
by mixing one-quarter teaspoon of rhodamine with five hundred

milliliters of water from the nearest creek. The solution was placed
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in a plastic bottle which, together with a solenoid pump, was housed in
a converted tool box for ease in transportation.

The solenoid pump (Valco, Inc., Model # PV-500) injected the dye
via a copper tube into the water. The pump was remotely activated by a
hand held switch, connected to the pump by 2 two meter cord. By
adjusting the strength of the piston stroke, it was possible to create
one—half centimeter spheres of dye. The spheres were released
perpendicular to the direction of water flow, thereby reducing the
chance of any pump-related inertial effects from entering the velocity
measurements.

An Olympus 10 camera was used to track the dye's motion. The
camera was equipped with a8 wide angle lens, to give a sufficient field
of view to track the dye, and an autowinder, which wound the film at a
rate of two frames per second. While in the field the camera was kept
in a watertight, plastic diving case. The case allowed for adjustments
by means of a "glove” built into the plastic. The camera was remotely
operated by a shutter release attached tc the autowinder. Color film
was used in the camera.

A Casio PG-10 brand pocket-sized digital clock was used as the
time scale. The clock was operated in it's stop—watch mode, accurate
to one—tenth of a second. The quartz display {(black numbers on a white
back ground) provided the sharp contrast needed to read the time from

the prints.

The dve-injecting copper tube, camera, and clock were secured to a
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modified point gauge, as shown in Figure 4.4. The relative position of
these Instruments remained constant during the course of the
experiments. By turning the dial on the point gauge, the whole
apparatus could be moved up or down as desired to take measurements at
different water depths.

The modified point gauge was held in position by attaching it to
one end of a board, the other end of which was clamped to a frame made
of three—guarter inch pve pipes fastened together with aluminum
connectors, to prevent rust. The tool box containing the solenoid pump
and dye were also placed on this frame.

In addition to the components of the metering device described so
far, there is one auxillary piece of equipment that should alsc be
mentioned. An umbrella was held over the sampling station to reduce
reflection of the sun's rays off the water surface. Without the
umbrella, nothing could be seen in the prints but a shiny, mirror-like
surface (Polarizing filters were tried, but did not work as well as the

umbrella).

4.3.2 Stage Height and Meteorological Data

The water height at four or five locations surrounding the study
area was recorded at roughly one—half hour intervals using meter sticks
inserted into the peat. The meter sticks w:re marked to one-tenth of a
centimeter. At each meter stick location, the height above some

arbitrary datum was obtained using a level, also accurate to about

117



.001lm. With these two measurements, it was then possible to calculate
the water surface elevation n = h_+z, at the meter stick location.
The wind speed and direction at the study area were measured using
a portable meteorological station (#474-2 Electronic Weather Station,
manufactured by Science Associates). Specifically, a cup anemometer
and wind vane were mounted om a three meter collapsible mast. The
information was recorded on a strip chart recorder, driven by two six

volt batteries.

4.4 Operating Procedure

This section describes a typical field day, involving the
operation of the apparatus described in the previous section. Two
people were required to collect the data. At the beginning of the
field day the equipment was carried out to the study site and assembled
in anticipation of the flooding tide. Assembly took about one hour.

To minimize flow disturbances at the sampling site, the metering device
was oriented so as to be downstream of the dye injection area. The

procedure followed in operating the equipment is given below.

(1) After the tide flooded the sampling site, the point gauge dial
was turned until the bottom of the copper tube touched the water
surface. The dial reading and the water level on a nearby meter stick
were then recorded. (Knowing these two measurements enabled later

determination of the pogition of the dye pulse).
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(2) When the water reached the desired depth of the first profile,
measurements were begun. One of the two workers, holding the umbrella
with one hand, used the other hand to hold an identification card
marked with the number "1" in the camera's field of view. The other
worker then released a dye pulse, and took pictures of it's motion.,
Typically, three to four pilctures were taken, during which the dye
moved about twenty centimeters. This constituted one run, with ome or
two such runs being performed at each depth. This process was then
repeated every five centimeters until the profile was completed. At
each depth, the identificetion card was chinged, so that a different
number appeared in the prints. Given a water depth of twenty
centime ters, about ten minutes were needed to complete one profile.

(3) Having finished one or two profiles, stage height readings
were t:ken. One worker remained by a designated "base” stage stick,
while the other worker went to each of the other stage sticks
circumbscribing the study area. Simultaneous readings were then taken
at the base stick and each of the other stage sticks in turmn.

Steps (2) and (3) were repeated until the time arrived to move the
metering device, either to a different station, or because the tide had
changec, and the water was flowing in the opposite direction. In the
latter :ase, the device was swung around 180 degrees, so that veloccity
measure ments were taken at the same location as during flood tide.
Having moved the device, it was necessary to redo step (1.

Once the water drained off the marsh study area, the stage sticks
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were levelled in; this enmabled later calculations of z} (see Figure

2.1).

4.5 Data Reduction

4.,5.1 Velocity Measurements

Determination of Distance Scale

As mentioned earlier, the flow-metering device contains a time
scale, but no distance scale. Before being able to calculate the flow
velocities from the dye prints, it was necessary to find a way to
measure how far the dye had moved between prints. Because the dye
could be located anywhere from right at the water surface to a depth of
over twenty centimeters, the possibility that refraction of light
passing across the air-water interface might affect the distance
measurements was first investigated.

Investigation of the refraction effects was carried out by taking
plctures of a wire screen (mesh spacing *.008m) submerged to various
water depths, ranging from zero to twenty-five centimeters. In order
to simulate field conditions, the distance between the camera and grid
was held constant at the same value as that between the camera and the
dye release point on the flow-metering device. Film positives of the
wire screen were then enlarged to the same size as the dye prints. The
film positives, being transparant, were laid on top of each other, from
which it was seen that the difference in size between the grid not

covered with water and that covered to a depth of ten centimeters was

120



about two percent; similarly, the difference between this grid and that
submerged to twenty-five centimeters was also about two percent. This
error, when compared to the other sources of error discussed later, was
considered small enocugh to be neglected.

Aside from investigating refraction effects, this procedure
provided the necessary means for determining the dye's motion;
specifically, the film positive of the grid submerged to a depth of ten
centimeters was chosen as the distance scale. The grid was laid over
each of the dye prints, the position of the center of the dye patch
then being recorded in terms of a cartesion coordinate system drawn on
the grid. Obviously, the orientation of the grid had to be kept the
same from print to print. This was done by aligning the x and y axis
of the grid with an L shaped metal bar holding the clock. The compass
bearing of the metal bar, having been recorded in the field, indicated
the direction of dye movement relative to the study area.

Once all the prints had been analyzed, the information was stored
on a data file. It was then a relatively straightforward matter to
calculate, for any two successive prints, the direction and magnitude
of the wvelccity.

Error Analysis

There are two sources of error im determining the velocity; those
associared with the measurement of the distance, and those associated
with tine. The reiative contribution of these two effects can be

dv
seen by considering the most probable fractional error of velocity C:r)
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defined as (Topping, 1982)
&vy L ((8%y2 | (8Ey2y1/2
EH =@+ O
(4.1)

where x 1s the measured distance traveled by the dye in a measured time
t, v is the measured velocity (v-%), and §x, 6t are the measured errors
in distance and time respectively.
5x St
In order to calculate the fractional errors —~ and‘;‘ various
estimates of distance and time are required. These estimates are

defined below:

Xy = distance traveled by dye between two prints
tp ~ elapsed time between two prints

Xpax — total distance dye's motion is followed

t - total time dye's motion 1s followed

nax
6x4,6t; - errors in distance and time due to
instrument imprecision
d,,dy - vertical and horizontal distance spread
by dye over x .
Values of these quantities are given in Table 4.2 for the regions above
and below the grass. These estimates were derived on a qualitative

basis for the purpose of calculating the fractional errcors in distance

and time. These errors are discussed below, and summarized in Table

4.2.
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The fractional error in time %f’ is almost entirely the result of
lack of precision in the digital clock. The digital clock is accurate
to one-tenth of a second (Gti v .18); the fractional error in time can
then be estimated asﬁtiltﬁ values of which are given in Table 4.2.

The fractional error in distance %§ arlses from two major sources;
instrument imprecision, and spreading of the dye pulse. The error
arising from the lack of precision of the distance scale can be
estimated by recalling that the mesh size of the grid is about .GO08m
(§%;7.008m); the fractiomal error in distance is then Bxi/xp s as shown
in Table 4.2,

The other major source of distance error relates to the spreading
of the dye pulse. At the time of release, the dye, having a length of
about .005m, spreads horizontally and vertically under the influence of
various forces.

The vertical spreading of the dye will be caused largely by
turbulent diffusion. The vertical distance (d,) over which the dye

spreads may be estimated as (Fischer et al., 1979)

He
d =Vt +—t (4.2)
v o P max

where ¢, is the initial length of the dye pulse (2, 005m). The
turbulent diffusivity v, can be approximated from model comparisons
agalnst the marsh flow data; representative values for the region above

and below the grass are given in Table 4.2. The larger predicted
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values of dv for the region below the vegetationm are due to the longer
time it's motion is followed.

As the dye spreads vertically, it will be sheared by mean velocity
gradients, causing a horizontal dispersion of the dye. If the velocity
gradients are linear, the horizontal spreading will be more or less
symmetric about the center of the dye patch (in the absence of other
forces). In this case, the motion of the center of the dye patch would
reflect the fluid's motion; assuming the center of the dye could be
accurately determined, the vertical diffusion would not likely have a
significant effect on the fractional error in distance.

For marsh flow situations, where the velocity gradients are not
linear, the horizontal spreading will not be symmetric about the center
of the dye, the location of which no longer provides the most accurate
measure of the fluid's motion. Other factors contributing to the
asymetric spreading of the dye will be collision with grass blades, and
turbulent diffusion. Under the influence of these phenomena, the dye
will disperse horizoatally, obtaining a size (d;) over the distance
(Xpax) it's motion is followed. Values of d; for the regions above and
below the grass are shown In Table 4.2. These values were obtained
qualitatively from inspection of the dye prints. Even though the
velociLy gradients are significantly higher above the grass (see the
data in Section 4.6), the size of the dye patch is generally larger
within the vegetation, owing to the obstruction related effects

mentioned earlier. The horizontal spreading of the dye is seen to be
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generally larger than the vertical spreading.

In measuring the dye's motion, it did not seem practicable to try
and correct for the asymettric spreading of the dye, the nature of
which would depend on the effects described above. Instead, the
procedure used was to follow the center of the dye patch, determined
qualitatively for each print. The fractional error associated with

this approach can be estimated as e where 8x = ??- is the

max
measured error in distance.

The fractional error in wvelocity G%g) expected for any one
measurement is found by summing the individual contributions described
above. As shown in Table 4.2, the total error is about twenty percent.
This estimate is borne out in the next section, which presents the
observed velocity measurements. From Table 4.2, most of the error for
the region above the grass is due to instrument imprecision, while for
the region within the grass most of the error is related to the
horizontal spreading of the dye.

While it is believed that this discussion has included all those
errors of practical importance, there may still be other unexplained
and unexpected errors. One such source of error may be flow
disturbances resulting from the presence of the metering device, and
the field workers, standing in the water. As mentioned earlier,

attention was taken to minimize this possibility by restricting all

activity to the area downstream of the sampling site.
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4.5.2 Stage Height
Calculation of Slope from Stage Height Data

The water heights at various locations surrounding the study
area were recorded at roughly one-~half hour intervals during the period
of tidal inundation. The water heights were determined by meter sticks
inserted into the peat. At each meter stock location, the elevation
above some arbitrary datum was determined with a level. with these
measurements, it was then possible to calculate the total elevation
n = h iz, at the meter stick locations.

Knowing n at these points surrounding the study area, some way
was needed of using this information to calculate the water slopes at
the velocity measurement stations (The object being to then use the
slopes in the model comparisons). Given the information available, it

was decided to assume the water surface over the entire study area was

a plane, given by the equation

n=by +b,x+byy
(4.3)

where by, by aad by were determined by applying a least squares
regression analysis to the known values of N at the meter stick
locations. Obviously, this procedure could only be carried out at
those times when measurements of N had been recorded. At intermediate
times, the slopes were obtained by linear interpolation of the

coefficients b2 = gﬁ' and b3 = %E}
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In general, values of n were not avallable at all the meter
sticks at the same time. As discussed earlier in Section 4.3.2, values
of 1 were recorded simultaneously at a designated base stage stick, and
at each of the other meter sticks in succession. Each such pair of
readings was separated by roughly a one minute interval,
during which the tide changed by about .002m. Simultaneous readings
at all the meter sticks were obtained by linear interpolation, using
the base stage stick readings to determine how much change should be
made at other locations. The resulting set of simultaneous

measurement were then used toe find the equation of the plane, as

described above.

Error Analysis

The coefficients by and b determined by the above method are
only valid when the marsh is completely flooded. Under conditions of
partial inundation, it would not be very meaningful to assume the water
slope will be approximated by a plane, the equation of which will
depend on variables at points that may be separated by dry ground. The
period of complete tidal inundation was determined for each field day
with the aid of the topographic survey, and field notes made on that
day.

Even when the study area is completely flooded, the water surface
may not be a plane. One way of testing whether the data are consis-

tent with this assumption is to estimate the standard error of the
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coefficients by and by. These standard errors, shown as the error bars
in Figures 4.10-4,14, vary between twenty to forty percent of the
magnitude of bz or b3.

Aside from the error associated with the fit of the data, there
will also be an error associated with the measurement process. As a
simple, one-dimensional case, consider that the slope (s) between two
peints is

X
5

8

(4.4)
where Ny, N, are the elevations at two meter sticks, separated by a

distance Xg.

Similar to the procedure used in Section 4.5.1, the most probable

error in the slope can be estimated as

dn §x
88,2 _ 1 .2 8,2
(S 2(_—‘—_(n2_n1)) + (xs ) (4.5)

where ¢ refers to the error of the associated quantity. The above
expression assumes that the errors in N, and N, will be about the same.
As average values, xg may be taken as 40m; the corresponding value of

(my,-1y) will be about .0lm. With these estimates, it is possible to

determine the fractional errors in distance and elevation, as follows.

(1) Fractional error in distance

The tape measure used to determine x  is marked to .Olm. In
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reality, however, the error will be larger than this, owing to the
unevenness of the tape as 1t passes thﬁfugh the grass. Estimating this
x
S
error to be about .lm gives an error (, ) of 3x10'3.
-]
{2) Fractional error in elevation

dn
)2, it should first be remembered

To determine the error 2

21
that, in general, the values of n used in the slope calculations were

determined by liner interpolation with three meter stick readings. The
most likely error 6m is then estimated as (5n1)2=3(6n)2,

where én 1s the error of the individual elevation readings.

Recalling that n = h_+z,, 1t follows that @n)2=(6h)2+(6zb)2, where &h
= 6z, = .00lm (see Section 4.,3,3). Inserting this into the above
expression for én;, glves a value of 5n1 = ,003m. The fractional error

/7o
(‘“‘L'-) then becomes .35.

NMy=T

2F;i practical purposes, the entire error is seen to be caused by
imprecision in resolving the differences in elevation. The fractional
error 8s/s is about the same magnitude as the standard error of the
coefficients by and by, suggesting the possibility that the size of the

standard errors is not so much a reflection of the assumption of a

plane water surface, as of 1naccuracies in the measurement technique.

4.5.3 Wind Speed and Direction

The wind speed and direction were recorded by pens striking against
pressure sensitive paper. The frequency of recording was about once

every two seconds. The recording paper was marked to 1/2 m/sec and 10
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degrees for the speed and direction transmitters, respectively. On a
typical field day, the recorded velocity varied over about 3m/sec, with
an average magnitude of about 5 m/sec. Assuming negligible
inaccuracies in the sensing devices, the fractional error in the value
of the velocity wused in the model comparisons may be taken as ‘éég
30%. Similarly, the error in the wind direction is about * 5 degrees.
As discussed later, the wind has little influence on the flow field for

the cases considered here, making the errors in wind speed or direction

of minor practical importance.

4.6 Presentation of Results

4.6.1 Velocity Measurements

Figure 4.3 shows the location of each velocity measurement
station on the study area, as well as the observed direction of flow
during flood and ebb tide. No measurements were taken in the panne
occupying the center of the study area. This region had no vegetation,
and was at a lower level than the surrounding marsh surface, with the
result that the water depth during tidal inundation generally exceeded
the capabilities of the metering device.

Depending on the tide, the direction of flow is seen from
Figure 4.3 to be fairly constant over the study area; remembering that
these measurements were taken over a period of about a week, it is also
seen that the flow direction is constant from day to cay, as would be

expected for tidally driven flow.
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The velocity profiles taken at each station are shown in Figures
4.5-4.9. Each profile is marked with an identification number giving
the station number and profile number, in that order.

The position of the tide (i.e. flood or ebb) and time of day is also
given for each profile. The range of measurements observed at each
depth indicates a velocity error of about twenty to thirty percent,
which agrees with the estimates made in the previous section. The
generally higher velocities observed during flood than ebb tide are
caused by the larger water slopes, presented in the next section.

The grass height for each profile is identified with a dashed
line. The grass is seen to be either completely submerged below the
water surface or, more often, protruding through the entire water
column. Further discussion of the velocity measurements is postponed
until Section 4.7, which compares the experimental results against

model predictions.

4.6.2 Stage Height and Water Slope

Figures 4.10-4.14 present the results of the stage height
measurements, with each figure corresponding to a different field day.
The figures are divided into three sections. The uppermost section of
each figure plots total elevation n against time for the northern most
meter stick.

The middle section of the figure shows the water slopes in the

north and west direction, calculated by assuming the water surface over
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the entire study area to be a plane, as discussed previously. The
error bars represent the standard error of the coefficients of the
equation of the plane. The water slopes are seen to be asymmetric
about slack tide, with higher values during flood than ebb tide. The
asymmetric nature of marsh tidal flow, as applied to the creeks, has
been noted by Boon (1975), among others.

The bottom section of each figure shows the net direction of
water slope and velocity at the time each profifle was taken. Depending
on the tide, ;he direction of water slope is seen to be fairly constant
from day to day. Also shown in the bottom section is the period during
which the study area was completely inundated, as determined with the
topagraphic survey, and the aid of the field notes. Except for the
profiles taker around the time when the study area was only partially
inundated, the water slope and direction of flow are in roughly the
same direction. The most notable exception to this occurs for stations
2 and 9 (Figures 4.11 and 4.14), both of which are located in the same
part of the study area. The water slope and velocity in these cases
are approximately perpendicular; although the wind is in the same
direction as the water flow, it's magnitude is too small to account for
the observed velocities in the grass. The water flow in this part of

the study area is significantly different from that at the other

stations, and seems to be governed by local conditions that do not apply

elsewhere on the marsh.
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4.6.3 Wind Speed and Direction

Figure 4.15 presents a weather station record of wind speed
and direction for a typical field day. Both the magnitude and
direction are seen to be rather steady; as might be expected for an
area bordering the sea, the direction of the wind was almost always
landward, with a heading of about seventy degrees from north. The

magnitude and direction of the wind for each field day is noted in

Figures 4.10-4.14.

4.7 Comparison of Field Data and Model Predictions

Having analyzed the field data, it was then possible to use this
information in model comparisons. Only those profiles in which the
study area was completely flooded, and in which the water slope and
velocity had approximately the same direction, were used in model
predictions. Figures 4.16-4.23 show the observed and predicted
profiles for each case. For simplicity, and ease of comparison, only
the velocity magnitudes are shown in the figures.

In order to make meaningful comparisons between the observed and
predicted results, it was necessary to simulate the physical
condititons existing at the time the profiles were taken; this wag done

in terms of the following model parameters.
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4.,7.1 Water Slopes

The water slopes é%;%} ) at the time of each profile were
obtained by reference to Figures 4.10-4.14. As discussed later, the
wind has little effect on the flow, from which it follows that the
direction of flow predicted by the model will coincide with the

direction of the net water alope.

4.7.2 Grass Characteristics

The vegetation was modeled as a collection of circular cylinders of
different lengths. Three parameters characterizé the cylinders. The
first one is the height of the tallest cylinders; in general, this was
taken to be the same as the depth of the grass recorded in the field.
In those cases where the grass was completely submerged, this height
was adjusted slightly (by about ten percent) to give a better fit to
the data in the region above the grass. This change is within the
error with which the grass height was measured.

The second parameter is the drag coefficient (Cd)' which was taken

to be that of a circular cylinder of .00lm diameter (d=.001m). (Cy?

was thus a function of the obstruction-based Reynold's number (Re=¢%2+v2d/u)
as given by Schlighting (1968).

The third parameter is the vegetation density (a) which appears
together with (Cd) in the drag term. As discussed in Chapter two, the
drag of a single, isolated element is gemerally not the gsame as that of

a group of such elements. This sheltering effect is usually accounted
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for by assuming that (a) is given, and then adjusting (C4) to fit the
data. Not knowing (a) at the velocity measurement station, it was
decided to specify (C4), and them adjust (a).

Using a constant value of (a) in the model was found to yield
unsatisfactory agreement with the data; to obtain better results, (a)
was allowed to vary with height, it's magnitude being determined to
give a reasonable fit to the data. The distribution of (a) used in
each model prediction 1s shown in the appropriate figure. The same (a)
profile was used in all comparisong made at any one station.

As mentioned above, the sheltering effect 1s accounted for in the
value of (a). Coumon values of the sheltering coefficients (py)
recorded in vegetative canopies, such as corn, are about 3 (see Section
3.4.1). Thom (1971), in a wind tunnel study of flow through circular
cylinders of .00lm diameter, and obstruction-based Reynold's number
(R;) of about 60, found (py) to be about one. For marsh grass, having
similar geometry, and R, values, it seems possible that the same (pg)
would apply, in which case the computed values of (a) would not be
significantly different from those determined directly from the grass
geometrTy. The maximum difference expected between the computed and
actual values would be about a factor of three.

The only literature known to the author about marsh grass demsitiles
is in a paper by Valiela et al (1978). Using their values of stem
diameter {(about .002m), and stem density/m2 (about 1000), a value of

a = 2m~! is computed. This number is compatible with those found by
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model predictions. The trend of decreasing (a) with height is not
surprising, and is in accord with what might be expected for a tall
grass, having most of it's mass near the bottom, and getting
progressively thinner with height.

These ideas are corroborated by Schaefer et al (1982), who
determined the vertical (a) distributions at six sites within the same
study area used in this investigation. The location of each site is
shown in Figure 4.3, The observed (a) distributions are displayed in
Figure 4.24. The higher values of (a) recorded at site 6 are due to

the predominance of the grass Distichlis spicata at this location; at

the other five sites, Spartina alterniflora was the major species.

(The velocity measurements were all taken in Spartina alterniflora).

Comparing the (a) profiles determined by Schaeffer with those predicted
by the model, the following points are observed;

{1) As with the model predictions, the recorded (a) profiles
are not the same for each site, reflecting the spatial variation
mentioned above.

(2) For z > .05 m, the cbserved (a) profiles are seen to be 1n good
agreement with those determined by the model, both in terms of shape,
as well as range of magnitudes. For z < .05 m, the model values are
generally lower; this is most likely due to the fact that few
veloclty measurements were taken in this range, thua requiring
extrapolation of (a) from higher regions, where velocity measurements

did exist. The higher observed grass densities near the bottom
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indicate that the velocities In this region will probably be less than
those predicted by the model in Figures 4.16-4.23.

Except for the near—bottom region; it is seen that the model
has reproduced the same general (a) distributions as found by the
measurements of Schaefer. This supports the belief that (a) did not
serve as merely a fitting parameter in the model caleculations, but

represented the conditions in the field.

4.7.3 VWind Stress

The wind stress was obtained by solving the model equations (2.9)
for the overlying air flow. The predicted values of stress for each
profile are shown in Figures 4.16-4.23. For the cases
considered here, the wind stress will have little effect on the flow,
except for a thin region near the water surface. That this is so can
be seen by noting that the average velocity recorded over the study
area was about 5m/sec; using the relationships defined in Section 2.3,
this gives a value of stress of about .03 n/mz, compared to a pressure
force (pg %ﬁhw) of about .2 n/mz. In the presence of grass extending
into the air, the effect of the wind would be even less. For practical
purposes, the wind stress could have been set to zerco for the cases
examined here, without appreciably affecting the results. In general,
however, this may not be true; thus, for instance, at slack tide, or in
dead-end regions of the marsh, the wind may be important. The

following discussion, while directed specifically at the procedure used
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in the trial calculations, serves also as a guideline for those
situations in which the wind stress may play a role in determining the
velocity.

The boundary conditions for the air flow situations are given in
Section 3.5. In review, the upper boundary conditions on the velocity
are prescribed values of U, and V, at a reference height h,. These
were determined with the help of the meteorological station data, which
provided the wind speed (W) and direction at a height of three meters.
Aligning the x axis with the direction of the wind allowed V, to be set
equal to zero. Using a reference height of ten meters (ha = 10m), the
velocity U, was adjusted until the velocity predicted by the model at
three meters coincided with W. An alterenate procedure would have been
to set h, = 3m, and U, = W. This route was not followed because of the
concern that, at a height of three meters, %E‘ and -%E would not be
zero, as prescribed in the boundary conditions. The dependence of
model results on h, is discussed in the next Chapter.

In addition to knowing the reference velocities, solution of the
model equations required knowledge of the grass properties. In
principle, the vegetation density should have been changed for each
station, in accordance with the spatial variation of the grass
parameters. Considering the small magnitude of the wind stress,
compared to the tidal forces, this seemed unnecessary for the cases

1

considered here; instead, a value of a = 4m = was used in all

comparisons. For similar reasons, the wind stress was set equal to
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zero for those cases where the water surface was more than five
centimeters below the top of the grass.

In accordance with the model's inability to handle bottom
roughness, these wind calculations assume that the water surface is
hydraulically smooth. This is almost certainly a resonable assumption
for the low wind cases (about 5m/sec), studied here. Given the great
reduction of stress within the grass, as shown in Figure 3.15, it seems
likely that, as long as the grass protrudes well above the water
¢olumn, the water surface may be taken as smooth with no appreciable
influence on the results. If, however, the grass is completely
submerged, or nearly so, the water surface may become rough enough
under the action of a strong wind that the smooth surface assumption
would no longer be valid. 1In this case, recourse could be had to the

wall functions, discussed in Sectiom 3.3.

4.8 Discussion

The agreement between the observed and predicted velocitles
shown in Figures 4.16-4.23 is generally quite good, both below and
above the grass. While it is true that the vegetation density (a), and
in some cases the grass height (hg) as well, were adjusted to obtain a
better fit,.it should be remembered that the same values were applied

to all profiles taken at onme station; in particular, this refers to

Figures 4.16-4.21, in which a total of six profiles were studied using

two (a) distributions, one for each station. This gives some
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indication that (a) was not merely a fitting parameter, but represented
the conditions found in the marsh. The profiles of (a) seem
reasonable, and are compatible with the admittedly scant available
literature, as well as the observations in Great Sippewissett Marsh.
The variation of (a) between stations could be said to reflect the
spatial variation of the grass properties.

Both the observed and predicted velocity profiles share certain
general trends; among these are,

(1) nearly uniform velocity within the grass. This is due to
the dominance of the preasure forces over shear effects. Neglecting
the shear stresses, the momentum equation expresses a balance between

the drag and pressure, giving a uniform velocity of

2 1/2 2 1/2 (4.6)

2hH2 - (e TH MDD
d

(u™+

The velocities predicted in this manner for each profile are shown in
Figures 4.16-4.23. The drag coefficient was taken as 2.5, which is
roughly the same as that used in the model calculations, and
corresponds to the value of (Cy) for a clrcular cylinder with a
diameter of .00lm, and a velocity of about .0lm/sec.

This simple model is seen to yield close agreement with the data in
those cases where the grass protrudes throughout the entire water
column. As long as the wind speed is small, compared to the pressure

forces, (4.6) will accurately predict this type of flow. As discussed
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later, however, the wind stress may not always be negligible.

For those cases where the grass is completely submerged (i.e.
Figures 4.17, 4.18, 4.20) (4.6) also fits the data fairly well within
the vegetation. In general, however, this will not be true. In
gituations where the grass is completely submerged, a shear stress
will be created in the grass by the overlying layer of water. This
shear will induce velocities within the grass larger than those
predicted by (4.6). This trend is not very noticable in the data of
Figures 4.17, 4.18, 4.20 owing to the relatively large grass depth
(hg) compared to the depth of water. . For cases having smaller

the shear will have more of an influence on the

values of hg/hw ,

h
velocity profiles, making (4.6) less useful. The effect of iﬁa is
discussed in the next chapter. )

Finally, (4.6) can not handle the layer of water lying above the
top of the grass in Figures 4.17, 4.18, 4.20.

(2) velocities in the water above the grass considerably larger
than within the grass. This result is observed both in the data and
the model predictions, the two of which are in generally good agreement
irn the above grass region. The larger velocities imply that, although
the above grass region 1s not as deep as the canopy layer, it may still
play a major role in the overall marsh circulation patterns. As such,
it is important to have a model that can handle this region.

(3) negligible wind effect. As discussed in detail in the previous

section, the wind forcing is generally an order of magnitude
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smaller than the pressure forces. While characterizing the profiles
studied here, this is not a general feature of all marsh flow
situations. It is conceivable, for instance, that under certain
circumstances, such as at slack tide, or in closed-end marsh areas, the
wind could be the dominant driving force.

The above discussion has stressed the point that the flow
conditions represented in Figures 4.16-4.23 do not include all
possible situations that may be encountered in tidally inundated
marshes. In particular, this refers to shear effects; while relatively
unimportant for most of the studies studied here, the influence of
shear on the velocity profiles will become greater under conditions of
lower grass to water depth ratios, or larger wind stresses. Of the
three cases discussed in Chapter two, the profiles examined here most

closely resemble case 1, i.e., steady, tidally driven flow.

4.9 Summary

A time of travel flow-metering device, capable of measuring
velocities of about .0lm/sec in warsh vegetation, was designed, built,
and used in a field study of water movement in Great Sippewissett
Marsh. Vertical velocity profiles were obtained at various locations
on a study area, bordered on three sides by open water, thus allowing a
net flow during flood, and ebb tide. Stage height readings around the
perimeter of the study area and wind speed and direction were also

recorded. The water slopes corresponding to the times of the velocity
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profiles were derived from the stage stick readings by assuming the
water surface over the study area to be a plane.

Using this information, model comparisons against the flow data
were performed. The vegetation density (a), not being known, was
determined by using the model to obtain a reasonable fit to the data.
The same (a) distribution was used in all predictions made at any one
location. The drag coefficients (Cd) was taken as that of a circular
cylinder having a .00lm diameter. The wind stress was determined by
solving the model equations in the overlying air flow.

The generally close agreement between model predictions and
experimental results lends further support to the correctness of the
model formulation, and indicates the ability of the model to predict
the flow in tidally inundated marshes.

The degree to which the velocity profiles are affected by changes
in the driving forces, grass characteristics, and other parameters, is

investigated in the next chapter.
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Chagter v

Generalized Solution

5.1 Introduction

This chapter identifies the dimensionless parameters governing
obstructed flow, relating to such effects as the geometry of the
obstructions, or the relative magnitude of the shear and pressure
forces, and uses the model developed in Chapter III to investigate the
sensitivity of the flow field to variation of these parameters.

Three basic flow geometries are considered; these are shown in
Figure 5.1. The water movement in inundated salt marsh grass may
belong to either flow types I or II, or to a combination of these two
cases. The overlying air movement belongs to flow type III, which may
be thought of as a limiting case of flow type IL in which the ratio of
the depth of the obstructions to the flow depth approaches zero. For
simplicity, only uni~directional flow is considered, and the drag

coefficient (Cy) Is set equal to one.

5.2 Dimensional Analysis

The kinematic dimensional parameters governing obstructed flow

situations may be taken as

hg = depth of obstructions

hy

a

water depth

height above bottom at which velocity is specified

=2
|
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effective grass density

L]
(=9
[
il

Ux = (1)1/2 = friction velocity at h, (type IL flow)
¢
U, ={g -gﬂ-h‘“,)l/2 = characteristic velocity for pressure
x

driven flow (type 1 flow)

U

a specified velocity at h, (type III flow)

v kinematic viscosity of the fluid

These parameters may be arranged to form the following

dimensionless group (assuming that U, 1s relevant only for type III

flow)

h

Eﬂ- = ratio of height at which velocity is specified to depth of
g

obstructions.

h

HE = ratio of depth of confined flow to depth of obstructions
g

thga = effective area normal to the direction of flow per unit

horizontal area.

2
U

*

5~ = relative magnitude of shear force to total driving force
Un

Uh
> = Reynold's number

where U, = (qf +q3)l/2, and {j, N are appropriate scales for defining a
Reynold's number. As will be seen later, the velocity scale

Ug = Um(E—é—E)llz is often applicable, representing a momentum balance
g
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between the driving force (U, and/or Un) and the drag on the obstacles.
Table 5.1 presents the values of the above defined parameters for the
model runs considered in this chapter.

Before considering the effect of the dimensionless parameters on
the flow field, the influence on the model predictions of grid spacing,
and initial conditions, was investigated by modeling two flow systems,
geometrically and dynamically similar, but differing in scale by a
factor of two. The systems were of type I, as defined in Figure 5.1.
Reynold's number effects were eliminated by reducing v by a factor of
23‘/2 in the smaller configuration. To maintain geometrical similarity,
the nodal point grid spacing for the smaller configuration was half
that of the larger configuration. The various model runs performed for
each geometry are detailed in Table 5.1 (runs 1-4). The non~
dimensionalized velocity profiles for each run are shown in Figure 5.2.

From this figure, it is seen that the velocity profiles for the
two runs having different initial conditions are about 1% apart,
compared to about 10% for the two runs having dissimilar grid spacing.
(The grid spacing for the smaller configuration was kept at the same
value as that for the larger configuration, instead of being reduced by
a factor of two). The velocity profiles for the runs having the same
initial conditions, and similar grid spacing, are seen to be
practically identical. The close agreement between these two runs
gerves as a check of the model formulation, and of the completeness of

the set of dimensionless parameters.
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2 an V h |h
Run # hE a hw' ha | Uk 8 3x | (x1076)| U EE EE
gec sec m-/sec

1 .1 51,2 | - 0 5-10-% 1.83 - - .5 0

2 |.08 10{.1 | - 0 5.107| .647 - | - |5 0

3 |.09 10].1] - 0 5410 ~ | 647 - - |.5 0

4 |.094 10].1 1} - 0 5:10~3| .647 - | - 15 0

5 |.1 5/.1 | - 0 10-3] 1.83 - - |1 0

6 .1 5.1 ] - 0 10~2| 1.83 - | - 11 0

7 |.1] s].1 |- 0 .01 15 -l =11 0

8 |.1 sl.1 | - .21 L042 15 - -1 .98

9 |.1 5.1 | - .83 ,017 | 1.8 - | - 11 .98
10 |.1 0] 0 | - 0 5.10-3] 1.8 -1 -10 0
11 |.1) .1f{.1 |- 0 5:-10~3 | 1.8 -1 -11 0
12 |.1]1.0l.1 |- 0 5.10=3 | 1.8 - - i1 0
13 |.110.0].1 |- 0 5.10-3 1 1.8 - |1 -1]0 0
14 [.2 ol - |- 0 A2 15 - - 11 1
15 |.2|.05[.2 |- 0 42 15 - | -1 1
16 |.2| .5].2 |- o 42 15 - - |1 1
17 |.2 5.1 |- 0 42 15 - - |1 1
18 |.1 o| - po - - 15 7 |100] - -
19 [.1| .1| - po - - 15 7 {100} - -
20 {.1|1.0| - §o - - 15 7 |wo0] -
21 |.1[10.0] - O - - 15 7 1100 -
22 |.150.0| - JO - - 15 7 1100} -
23 |.1| s5l.1 |- 0 1073 (1.8 - |- 11
26 |.1 sl.1 |- po~4 5:10-3 |1.8 - - L1
25 |.1 5.1 |- 42 42 15 - - 11
26 |.1 5|1 |- W42 42 15 - - {1
27 |.1 5.1 |- 42 42 15 - -1
28 .2 5{.2 |- 0 0 15 - 1 - 11 0
29 |.18 6.7{.2 |- 0 0 15 - - |.75 0
30 |.08 20l.2 |- 0 o 15 - - Lol 0
31 |.2 5.2 |- 42 W42 15 - - |1 1
32 [.156.66(.2 |- 42 42 15 - - {75 1
33 ].0820.00.2 |- 42 42 15 - - |.05 1
3% 2.8 * | - |6 - - 15: 2.3]2.14 - -
35 2.4 % | - Q0 - - 15 13.0{3.5% - -
36 [2.4 * | - po - - 15 4.017.14 -

*
See Figure 3.18
TABLE 5.1

Model Simulation Parameters
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0,0 1.0 2.0 3.0 4.¢ 5.0 6.0 7.0 8.0 9.0

u/Um

Figure 5.2 - Model Runs Investigating Scale Effects.
Runs 1 and 2 Have Different Initial Conditions; Runs
1 and 3 Have Dissimilar Grid Spacing; Runs 1 and 4
Have the Same Initial Conditions, and Similar Grid
Spacing.
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A study was next done on the effect of a Reynold's number based
on the water depth, defined as R = U.h_ A, where U, 1s the average
velocity over the flow depth h,. For typical marsh flow situations, R
will be about 1000. At this value, non—obstructed flow would be on
the verge of changing from viscous to turbulent conditions. For
obstructed flow, where the individual elements serve as sources of
turbulence, this transition will 1ikely occur for lower values of R.
Although the fiow will thus be turbuleat, itrseemed plausible that at
Rv1000, viscous effects might still play a role in determining the flow
field. This was investigated through two experiments, in each of which
all dimensionless parameters except R were kept constant.

The conditions of the first experiment are detailed in Table
5.1, (runs 5-7), as well as Figure 5.3. Under these circumstances
(i.e. type I flow with hg/hw-l), the velocity will be given by Ug
throughout much of the flow depth, so that the value of the Reynold's
number becomes R ﬂ:Ushw/v « The value of R was varied between 1.1x103
and 1.1x104 by chanaging the slope g %%, as shown in Table 5.1.

From Figure 5.3 it is seen that near the bottom the velocity

deviates from U, to satisafy the no-slip condition at the bottom. As R

B

increases, the flow near the bottom assumes a more uniform shape, in
accordance with the greater momentum transfer caused by the more
turbulent motion. Over the range of R considered, viscous bottom
effects are seen from Figure 5.3 to extend about 10X into the flow.

The second experiment used to study Reynold's number effects
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Figure 5.3 - Effect of Reynold's Number (R—U h /Y)
on Type I Flow with h /h =1, C;h a-l
{(Runs 5-7).
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involved a situation having both shear and pressure forces. Two model
runs were performed, each having different magnitudes of the shear and

U
*

pressure forces, but the same ratio (——92. As such, R was the only
U

dimensionless parameter that varied; tﬁl range of R was between 2700-
6000. The two velocity profiles were found to differ by about 10%, as
shown in Figure 5.4.

In the above two experiments, having R on the order of 1000, the
ma jor features of the flow were found to be relatively insensitive to
R. To minimize Reynold's number effects on the model runms performed in
this chapter, the value of R was kept as constant as possible, not
usually varying by more than a factor of three during the course of any
one set of runs., On this basis, and considering the small impact on
the major flow features, Reynold's number effects are not considered in
this chapter.

The following three sections present discussions concerning the
effect of the dimensionless parameters on the vertical variation of
velocity, the flow conveyance, and the turbulent structure for each of
the types of flow in Figure 5.1. Comparisons are made between the
turbulence closure theories used in other studies and the closure
approach adopted here. WNext, the variation of shear stress at the top
and bottom of obstructions 1s considered, with the model results being
used to determine the empirical coefficients appearing in previous
obstructed flow models. The predicted values of the coefficients are

compared with observed values. Finally, a summary of the most important
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u/U,

Figure 5.4 - Effect of Reynold's Number (R=U hwfv) on Confined
Flows having (U*/Um)z =.98, hg/hw=1, thga=. {runs 8,9)
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\
conclusions of this chapter is presented.

5.3 Vertical Velocity Profiles

Figures 5.5-5.13 show non-dimensional velocity profiles for each
of the three flow types in Figure 5.1, as well as for confined flows
having both shear and pressure forces. Each figure illustrates the
effect on the vertical velocity profile of varying one of the

dimensionless parameters, as discussed below.

5.3.1 Cghga

thga represents the effective area of the obstructions normal
to the direction of flow per unit horizontal area. Representative

values of thga for various canoples are .l for salt marsh grass, 1 for

corn (DenHartog & Shaw, 1975), 4 for bulrush millet (Begg et al, 1964),
and 5 for beans (Thom, 1971).

The presence of obstructions in the flow causes a drag force to
be exerted on the fluid, resulting in a decrease in the velocity,
other factors being kept constant. The effect of thga on the veloclity
magnitudes for flow types I and II is shown in Figures 5.5 and 5.6.
Assuming a constant U , the velocities in each figure may be directly
compared. For thga about .1, the velocity in the pressure driven
cases is reduced by about a factor of four from the equivalent non-
obstructed flow situation; for shear driven flows, in contrast, the

velocity is reduced by almost a factor of temn. The larger reduction
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thga=.01 thga=0.0

5.0 10.0¢ 15.0 20.0 25.0
u/Um
Figure 5.5 - Dimensionless Velocity Profiles for Type I Flow with

hg/hw=l.0. (Runs 10-13}.
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T

10.0 20.0 30.0 40.0

Figure 5.6 - Dimensionless Velocity Profiles for Type II Flow
with hg/hw=l. {(runs 14-17})
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for wind driven flows ig due to the fact that, unlike the pressure
gradient (g-%%), which is uniform with depth, the stress driving the
shear flow attenuates with depth.

As mentioned earlier, the velocity scale U8 is often appropriate
for obstructed confined flow situations. The effect of Cyhga on u/Ug
for flow types I and II is shown in Figures 5.7 and 5.8. In Figure
5.7, u/Ug approaches one as thga increases; the reason is that, with
denser obstructions, the shear effects become less important, leaving a
balance in the momentum equation between drag and pressure. For thga
greater than .1, the velocity is practically constant with depth. Many
of the marsh flow cases examined in the previous chapter, having thga
greater than .1, would fall in this category.

In contrast to the pressure drive flows, the ratio u/U8 for the
shear driven flows becomes progressively less with thga (Figure 5.8),
reflecting the reduced amount of energy that can diffuse downward to
drive the flow.

Figure 5.9 shows the computed velocity profiles for unconfined
(type 11I) flow. For thga=0, the velocity profile has the expected
logarithmic shape. As thga increases, the velocity within the
obstructions decrease (assuming a coustant value of Ua). Ags discussed
later, the relatively uniform velocity in the obstructions, compared to
the shear driven flows, is a result of increased diffusion of turbulent
energy from above the obstructions. For Cyhsa=l, the value of du/dlnz

for z/hg > 10,can be seen from Figure 5.9 to have a different value
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Figure 5.7 - Dimensionless Velocity Profiles
for Type I flow with hg/hw=1 (Runs 11-13)
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Figure 5.8 - Dimensionless Velocity Profiles for Type 1T Flows

with h /h =1. (runs 15-17)
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Figure 5.9 — Dimensionless Velocity Profiles for
Type III Flow. (Runs 18-22).
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than for z/hg < 10, suggesting that the height above the obstructions
at which the logarithmic profile begins may wvary with vegetation

density.

U*
2
5.3.2 (Um)

The velocity profiles in Figure 5.10 correspond to confined flow
situvations having both shear and pressure driving forces. For
(U*/Um)z-o (type 1 flow), the velocity is given by Ug, as discussed
earlier. As (U*/Um)2 increases above zero, the value of u/Ug becomes
progressively smaller, reflecting the increased importance of the shear
stress. At (U*/Um)2=.5, corresponding to equal shear and pressure
forces (i.e. UirUﬁ) the value of u/Ug is about .75 throughout most of
the flow depth. lor (U*/Um)2 greater than about .8, the velocity
profile is seen tc be close to the completely shear driven case
((U*/Um)z-l), indi-ating the dominant role of the shear forcing in
these situvations.

5.3.3 hg/hw

In general, the marsh vegetation may not protrude throughout the
entire depth of the water column. The effect of hg/hw on confined
flows is displayed in Figures 5.11 and 5.12. In Figure 5.11,
corresponding to pressure driven flow, a progressively larger shear
stress is induced in the obstructions as hg/hw decreases, thus causing
velocities greater than those predicted by Ug‘ In Figure 5.12,
corresponding to shear driven flows, the velocity is seen to drop off

sharply for h,/h =1. As hg/hw decreases, the profiles become more
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Figure 5.10 - Dimensionless Velocity Profiles for Confined Flow

with hg/hw=l.0, thga=.5 (runs 23-27)
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Figure 5.11 - Dimensionless Velocity Profiles
for Type I Flows with C dhga=l.0. (Runs 28-30).
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Figure 5.12 - Dimensionless Velocity Profiles for Type Il
flow with thga=l.0 (runs 31-33)
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upiform, reflecting the increased diffusion of turbulence from above the

top of the obstructions.
5.3.4 h./h,

The uppetr boundary conditions on k and £ for unconfined flow
requires that the fluxes of these quantities are zero. To determine
whether the height (h,) at which this condition was applied might
affect the calculations, model runs were performed with different
values of h,, while keeping hg constant. The resulting velocity
profiles are shown in Figure 5.13. The different runs were made to
represent the same flow situation by using the velocities predicted
with the largest h, as the value of U, in the other model runs. Thus,
for instance, in the run with ha/hg=7.1, the predicted velocity at ha/2
was taken as the value of U, in the run with ha/hg=3.5. In this
manner, the velocities from the different runs are directly comparable.

From Figure 5.13 it is seen that the velocity profile for the run
with ha/hg=2.1 is about 10% different from that with ha/hg= 7.1.
The reason for this effect deals with the fact that the fluxes of k and
are not zero at short distances above the obstructions. As discussed
later, turbulent diffusion in unconfined flows is important up to
heights of about Bhg. Specification of h, within this range, where the
fluxes of k and £ are non-zero, will thus produce different results
than would higher values of h,, where k and € are wore uniform, and the

fluxes closer to zero.
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Figure 5.13 - Velocity Profiles for a Type IIT Flow with Different
Values of ha/hg. (Runs 34-36).
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5.4 Flow Conveyance

The total volume of water exchaugéd between different parts of
the marsh will be influenced by the height, and density, of the
vegetation. To investigate the effect of obstructions on flow
conveyance, average velocities over the entire flow depth (Ut) were
determined as functions of thga and hgfhw for both shear and pressure
drive confined flows. The results are shown in Figures 5.14 and 5.15.
Average velocities within the obstructions (Ug) for these two types of
flow, as well as for the unconfined flows, are gshown in Figures 5.16~
5.17.

For hglhw-o, the value of (Ut/Um) for both pressure and wind
driven flows is about 25. This agrees with the value prediced by (3.31)
for flow over smooth surfaces having Rb2.7x105, which corresponds to
the cases considered here.

For hg/hw’l’ the averge velocity (U.) for the pressure driven
flow (Figure 5.14) is seen to approach Ug with increasing thga. The
flow reduction for the pressure driven flow is less than that for the
shear driven flow cases (Figure 5.15), owing to the greater non~
uniformity of the velocity profiles.

As hg/hw decreases below one, the value of (U, /U,) becomes
progressively larger. For small hglhw (<.25), the total flow conveyance for
wind and pressure driven flows is about the same, indicating the
equivalence of these forces for flow in which most of the depth'is
unobstructed.

The average velocities within the obstructiions (UR) for confined

flows having hg/hw less than or equal to one are shown in Figures 5.16
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Figure 5.14 - U_/U_ versus th a for Confined, Pressure-driven
(Type I) Flows ﬁaang pifferén® values of hg/hw'
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Figure 5.15 - U /Um versus C.h a for Confined, Shear Driven (Type II)
Flows having DiffePent Value$ Bf hgfhw.
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Figure 5.16 - URKUm for Confined, Pressure Driven (Type II) Flow.
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Figure 5,17 - Uxﬁu versus C,h_a for Confined, Shear Driven

(Type 1II) Flows a%ing Diffegeﬁt Values of hg/hw.

192



and 5.17. For hg/hw less than about .75, the flow conveyance within
the obstructions is nearly equal for both shear and pressure driven
flows. Furthermore, the conveyance for these cases is approximately
the same as that for the unconfined flows, shown in Figure 5.18. This
is in accordance with the idea, mentioned earlier, that the unconfined
flow provides the limiting case for confined flow as hg/hw goes to

Zero.

5.5 Turbulent Structure

The turbulent structure for non—obstructed flows such as channels
is fairly well established (Townsend, 1976). When obstructions are
introduced into the flow, momentum is absorbed by drag on the
individual elements, thus causing a reduction in velocity, which in
turn tends to reduce the level of turbulence. 1In opposition to this,
the elements generate turbulent wakes, thereby tending to increase the
level of turbulent energy. This section Investigates the effect of
thga on the turbulent structure of the three flow types considered
here, and examines the differences with the non-cbatructed cases.

The vertical profile of turbulent diffusivity (u.) and length scale (%)

are examined with respect to simple turbulence concepts.

5.5.1 Kinetic Energy

Figures 5.19-5.21 show plots of kinetic energy, non-

dimensionalized by Ui, or, in the case of the unconfined flows, by UES
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(the strees at the top of the obstructions). 1In each figure, k
profiles for values of thga ranéing from zero to one are presented.
For the confined flows, k is zero at the top and bottom of the flow
depth; for the unconfined flow, the flux of k is set to zero at z/ha=1.

The k profiles share two general features:

(1) proportionality between k and the shear stress for the non-—
obstructed cases. Thus, for the pressure driven flows (Figure 5.19),
k/Ui decreases monotonically; for the shear driven cases (Figures 5.20,
5.21), where the shear stress is coastant with depth, k/Ui, k/UiS is
practically constant at 3.3, as predicted by (3.10). The
proportionality between k and (t/p) implies a negligible role of
turbulent diffusion in the kinetic energy equation (3.14a), leaving a
balance between production and dissipation (see Section 3.2.5).

{2) 1initial increase of k for low values of thga, followed by a

decrease as thga increases further. Assuming 02

m remains constant, the

kinetic energy for Cgh,a=.01 is seen to be generally greater than for

g
the non—-obstructed situation, reflecting the production of turbulence
by the obstructions (P4 Cdau3). As thga increagses beyond .01, k
starts to decline, owing to the reduction in velocity. In general, the

value of k for Cjh,a=.01 1s 1.5-2 times greater than for thga=0. 1t

g
is likely that at slightly lower values of thga, k may be even higher;
the exact maximum, however, can not be determined from the given model

runs.

The trend of increasing turbulence at low vegetation demnsities,
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Figure 5.19 - Dimensionless Profiles of
Kinetic Energy for Type I Flow with
hg/hw=1.0. (Runs 10-13).
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Figure 5.21 - Dimensionless Profiles of Kinetic
Energy for Type IIT Flow. (runs 19-22)
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other factors being kept constaht, has implications for aquatic systems
such as salt marshes, where the turbulence in the water motion may play
an important role in the life processes of the vegetation. It suggests
that areas of relatively lower vegetation density may be more turbulent
than reglons of no vegetation, or regions of very dense growth. In
these low density, high turbulent regions, there may be enhanced rates
of such processes as nutrient uptake, or exchange of gases or solutes.
The effect of turbulence on aquatic plants has been studied by Anderson
and Charters {1982), who found that a macro aigae {Gelidium nudifrons)
suppresses turbulence in the flow entering it's thallus, while at the
same time generating turbulence of it's own, depending on the diameters

and spatial density of the branches.

5.5.2 Digsipation
The vertical profiles of individual terms in the kinetic energy

equation (3.14a) for the flows discussed above are shown in Figures
5.22-5.31. In the non-obstructed cases (Figures 5.22, 5.24, 5.28), the
balance is seen to be almost entirely between production due to shear
(Ps) and dissipation. The small role of turbulent diffusion in these
flows was noted earlier as being responsible for the proportionality

between k and (T48.

As obstructions are introduced into the flow, the relative
magnitudes of the terms in the k equation changes dramatically. For
the confined, pressure driven flows (Figure 5.23) the role of P,

decreses as thga goes from zero to .0l. For greater values of thga,
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Figure 5.22 - Dimensionless Terms in Kinetic Energy Equation
for Type I Flow with hg/hw=l.0, thga=0.0 (run 10).
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Figure 5.23 - Dimensionless Terms in Kinetic Energy Equation
for Type I Flows with hg/hw=l'0’ thga=.01,.1,1.0. (Runs 11,12,13).
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P, becomes negligible as the production due to drag (P4) takes over to
become the dominant term balancing the dissipation. Remembering that
Py~ Cdau3, and that the velocity under these conditions is given by

U,., it follows that the dissipation will vary as 3_1/2. This trend is

g’
observed in Figure 5.23.

For the shear driven confined flows (Figures 5.24-5.27), where
the velocity gradients become larger near the top of the obstructionms,
neither P, or turbulent diffusion are negligible, as in the pressure
driven cases, and the dissipation no longer varies with 3'1/2.

Examining the results for the shear driven flows, it is seen that
turbulent dirfusion becomes relatively more important as thga
increases, reflecting the progressively steeper gradients in the flow
field. For the case with thga=1, the terms fall by three orders of
magnitude iun the to> thirty per-cent of the flow depth. In the lower
part of the obstructions, the turbulence is so diminished th;t viscous
effects become appzrent.

In contrast to the confined shear driven flows discussed above,
where turbulent diffusion is only important at relatively high values
of Cyh,a, the role »f turbulent diffusion in unconfined flows is
important at all values of thga, as shown in Figures 5.29-5.31.
Because of the rela .ively greater turbulent diffusion, the flow field
in the unconfined flow cases is generally more uniform and fuller than

in the confined flow cases mentioned above. For the unconfined flow

cases (Figures 5.29-5.31), it is seen that within the obstructicns the
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Figure 5.25 - Dimensionless Terms in Kinetic Energy Equation for
Type II Flow with hg/hw=l.0, thga=.01. (Run 15).
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Figure 5,28 - Dimensionless Terms in Kinetic Energy Equation
for Type III Flow with thga=0 (run 18)
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production of k due to drag 1s almost always greater than that due to
shear. The production due to drag ends abruptly at the top of the
obstructions. Above this level, the turbulent diffusion gradually
declines, leaving a balance between production due to shear and

dissipation.

5.5.3 Turbulent Diffusivity and Length Scale

Figures 5.32-5.37 plot the turbulent diffusivity (u,) and length
scale (&) for each of the three types of flow. From Chapter Three, H .

and 2 are defined by the expreasions

=Pl Ez_
He c1Py E (3.14a)
T S
(1+ .~ )
g = ut/okl/z (3.2)

Figures 5.32-5.35 show the vertical profiles of K, and 2 for the
confined pressure and shear driven flows. For thga=0, the turbulent
diffusivity in both types of flow is seen to increase lineafly from
each surface, reaching a maximum at about z/hg=.5. For the shear
driven flows, where k is constant, it follows from (3.2) that £ will
exhibit a similar behavior. For pressure driven flows, in contrast,
where k decreases monotonically, ¥, and £ do not have the same shape.

As th a increases above zero, the values of Hy and 2 for both

g
types of confined flows start to decline, reflecting the changes in the
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Figure 5.32 - Dimensionless Profiles of Turbulent
Viscosity for Type I Flow with hg/hw-l. (Runs 10-13).
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relative magnitudes of k and &, discussed earlier.: Within the obstruc-
tions, the turbulent scales are reduced below their non-obstructed
values. In general, however, % is not proportiomal to a single scale,
such as (hg) or (a). Thus, while (a) varies by a factor of 100, £ does
not change by more than a factor of two or three.

Figures 5.36 and 5.87 show vertical profiles of and 2 for the
unconfined flow model cases. The sudden increase in these quantities
at the top of the obstructions can be understood by referring to
(3.14c) and (3.2), and by noting that at z/hgﬂl, Py drops suddenly to
zero. Assuming that U, remains comstant, U is obaerved to increase

with C4hoa. (This 1s in contrast to the confined flow cases, where M

g
generally decreases with thga, other factors being kept constant).

The reason behind the increase in U for the unconfined flow cases can
be understood by noting that, to maintain a comstant value of U, as

thga increases, a larger driving force will be re@uired to overcome
the additional drag. This larger driving force expresses itself
through a large shear stress above the obstructions, leading to more
diffusion of kinetic energy, and thus higher values of M, . The trend
of increasing stress with thga for unconfined flows is considered in
Section 5.6.

One of the najor differences between the model proposed in this
study and previous obstructed flow models, such as those reviewed in

Chapter Two, concerns the manner in which the turbu'ent transport is

parameterized. In simple diffusivity approaches, gich as that of
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Cionco (1963) or Kondo (1976), the turbulent diffusivity is assumed
proportional to the product of a single velocity scale and single
length scale; the velocity scale ie taken as being proportional to
either the mean velocity gradient (mixing—-length approach) or the
friction velocity at the top of the obstructions (diffusivity
approach). In one such model, Cionco (1963), using a mixing—-length
approach in which the mixing length (zc) was assumed constant, derived

the exXpression

u
= exp @ (z/h -1))
u(hg) c g (2.12)
where ¢, 1s an empirical coefficient, equal to
wd e ha (BHH3
% TG E g 2
¢ (5.1)

Cionco's model was developed for unconfined flows only, and takes no

account of a free surface. The velocity at the top of the obstructions

(u(hg)) must be prescribed, and is not determined by the model.
Comparisen of g, and the turbulent length scale £ used in this

study can be done by noting that

H
t, 2 2 4 ,du,2
(-p—) = k" = 2 (dz)
{5.2)
. T du,?
W1th-5 = (1C Ezﬁ ,» the above expression becomes
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_ 1/p\1/2
v= g G (5.3)

For non—obstructed flows, where -TT/(E- = Cullz (from Section 3.2.5), and
L.~xz, {(5.3) reduces to i= q11/4 kz, as derived earlier in Chapter
Three.

The values of 2 predicted by Cionco's model were calculated for
the unconfined flow model cases treated previously. For each case, the
value of ¢, was obtained from (5.1). (The determination of . is
discussed in the next section.) Knowing £ ., it was then possible to
determine £ from (5.3). The results are shown in Figure 5.38, along
with the values of & predicted by this study. Note than Cionco's wodel
makes no assumption about £ for z/hg>1.

Figure 5.38 denunonstrates that for small values of thga (less
than .1) the values of % determined by (5.3) agree well with those
determined from the unconfined flow model results. Considering that &_
was obtained by firiing the predicted model velocities to (2.12), as
discussed later, this indicates that for small thga tie velocity
profile is exponent al, and may be described by (2.12). As thga
increases beyond .1, the agreement in L profiles becomes progressively
worse, indicating that the predicted velocity profile is approximated
less accurately by (2.12), and that there is no simple length scale
capable of predicting the flow field in these cases. In spite of the
differences in the . profiles, however, the velocity profiles for the
unconfined flow model cases as determined by this study, and by (2.12),
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are fairly similar in shape. As noted by Thom (1981), once u(hg) hasg
been fit (as it has here by fitting ac), then the velocity profile is
fairly insensitive to the shape of %. As discussed later, o, is not a
constant, but varies with thga, as well as other parameters. To the
extent that a . must be redetermined for differemt applications, the
predictive abilities of Cionco's model are restricted.

Clonco's model uses a turbulent diffusivity approach to
parameterize the shear stress. More complex, higher order models, such
as that of Wilson and Shaw (1976}, solve for the individual stresses
directly. This type of model generally requires some assumption about
the dissipation. Wilson and Shaw essumed that

A (5.4)

where A = 5.9 and %W was prescribed as being the maximum value allowed

by
fw =0 @ z=0
dew < K
dz
L < ..-g.'.-
da

The empirical coefficient o = .12 was determined by fitting the model

results to the velocity data in a corn crop, having hga of about one.

Recalling that in the model proposed here the dissipation 1is

related to £ by

C 3/2

P 2
d
)

T =

(1 + PE
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it follows from (5.4) that

€y

C'Pd
(1 + =9
pE

L= Afw

(5.5)

Using the above expression, the length scale £ as determined by
Wilson and Shaw's model was determined for the unconfined flow model
cagses. Values of tw for each case are presented in Figure 5.39. With
these values, and the model results for Py and E the prafiles of 1
were determined for each case using (5.5). The results are shown in
Figure 5.40. Examining this figure, the following .points are observed:

(1) For the non-obstructed flow case, % = .53kz. In the absence
of obstructions Py=0, so that from (5.5) £ = Cy A = -33kz (C,=.09).
This is analogous to thé result derived in Section 3.2.5, where it was
shown that in flows having negligible diffusion % ™ Culﬂ'kz = 55kz
(.see Figure 5.37). Thus, in the absence of obstructions, the turbulent
length scale as determined by Wilson and Shaw agrees with that
predicted by this study. This result 1s not surprising, but serves as
a check on the calculations.

(2) For thga=.01, .1, the turbulent length scale above the
obstructions is the same as if the flow were non-obstructed. For
higher values of Cgh,a, the turbulent length scale within the

obstructions is roughly proportional to (Cda)ﬂl, as might be expected
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from the manner in which fw is determined.

(3) The values of £ are less than those predicted in this study.
By prescribing the length scale algaebraically, Wilson and Shaw do not
allow it to be influenced by diffusion.

In general, the values of £ determined by previous obstructed
flow models do not agree with the results found in this study, owing to
the assumptions used to parameterize the turbulent transport. As
discussed earlier, turbulent diffusion is usually an important factor
in obstructed flows; this disagrees with the simple diffusivity
approaches, in which no consideration is given to the influence of
diffusion on the length or velocity scales.

A second area of disagreement with previous models concerns the
asgpumption that the turbulent length scales is proportional to either
h8 or (C4a). As determined in this study, % is not generally
proportional to either of these scales. Thus, for instance, in the
confined and unconfined model flow cases tFeated previously, (a)
changed by a factor of 100, while £ only changed by about a factor of
three.

A third discrepancy, referring specifically to Wilson and Shaw's
model, concerns the result that small values of thga do not affect the
turbulent structure above the obstructions. This contrasts with the
findings of this study, which indicate that even relatively sparse

canopies will alter the nature of the turbulence from it's non-

obstructed sitwation.
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In summary, the turbulent structure of obstructed flows has been
found to reflect the separate infuence of the two length scales hg and
(a), as well as the influence of diffusion. These factors will
interact with each other in potentially complicated ways, making it
doubtful whether a simple concept of 1, or 2, ignoring diffusion, or

the presence of more than one length scale, would be practicable under

the varying situations of interest in this study.

5.6 Determination of Empirical Parameters in Analytical Expressions

for Unconfined Flow {Type III)

In contrast to confined obstructed flow, which has received
relatively little attention in the past, considerable effort has been
aimed at trying to understand unconfined flows, both above and within
the obstructions. Much of this research has been directed toward
analytical expressions, which contain empirical coefficients obtained
by observation. It is interesting to use the dimensionless parameters
and the model proposed here to determine these coefficients, and to

compare the results with observed values.

5.6.1 Inertial Sublayer

The flow in the inertial sublayer overlying obstructions in
unconfined flow may be described by the semi-log law, given in Chapter

Two as
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u
* o (2.10)

where us is the friction velocity at the top of the obstructions, z, 18
the roughness length, and d is the zero plane displacement height.
Typically, us and z, are determined by fitting velocity measurements to
(2.10), after making some assumption about d. The following discussion
presents values of shear stress (pui) and z, determined for the
unconfined flow model cases, and examines how the predicted z, compares
with observed values.

Figure 5,41 presents the stress at the top Guis) and bottom (U*B)2 of
obastructions for the unconfined flow model cases. The stress is non-
dimensionalized by Ug; assuming U, remains constant, the stress at the
top of the obstructicns is seen to increase with'cdhga, reflecting the
increased stress necessary to achieve the velocity U, over a surface of
increasing roughness. For small thga, the stress at the top and
bottom of the obstructions approaches the same value. As thga
increases, the two stresses become increasingly far apart. At typical
margh values of hoa (about .1), the top and bottom stress will differ
by almost a factor of ten.

Figure 5,41 also shows values of zolhg for the unconfined flow
cases, as determined from (2.10), with u,z obtained from model values
at a height of ten meters. In the calculations, d was set equal to
Zhg/3 (Brutsaert, 1982). Since d appears in (z-d), the determination

of 2z, will not be very sensitive to the value of d, provided z>>z.
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Also shown in Figure 5.4l 18 the value zolhs-lIS, as recommended
by Brutsaert (1982) for vegetation such as grasses, shrubs, and bushes,
having hsa between .1 and 1. Over this range, the model values are
seen to be in fairly good agreement with the analytical expression.

The values of zolh8 for the unconfined flow model cases are also
exhibited in Figure 5,42, along with values for a variety of boundary
roughnesses, and 3D obstructions. This figure was taken largely from
Seginer (1974).

From Figure 5,42, it 1ia seen that for thga less than about .3,
the model values of zolh8 for unconfined flow agree with those of other
studfes. For larger thsa, gseveral of the curves reach a maximum, and
then start to decline. This trend does not hold for-the unconfined
model cases, in which zo/hg increases monotonically over the range of

thga considered.

The interpretation of the peak in the zofhR curve is that, as the
density of sparsely-placed obstructions increases, the drag increases,
and thus so does z; when {(a) becomes very large, and the obstructions
are densely packed together, the flow skims over the tops of the
obstructions, without penetrating downward, thus causing Q decrese in
z4e

Of the curves in Figure 5.42 that exhibit a maximum, only one
corresponds to obstructions having a comparable geometry to that of the
unconfined flow model cases. This is the wind tumnel study of

cylindrical pegs, done by Kawatini and Meromey (1970). 1In this study,
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11: Thom (1971), 3-D, rods; 12: Seginer (1976) 3-D, rods;
13: this study, 3-D, rods. (taken largely from Seginer .

(1874)).
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2, and ux were determined by fitting the velocity data above the
obstructions to (2.10), with d being taken as hg. As a test, the
friction velocity was also estimated in one case from measurements of
the drag force on the pegs by means of a shear plate. The difference
between the friction velocities calculated frow (2.10) and the drag
force was about 30% of the value obtained from the drag force.
Considering that z, will be fairly semsitive to us, which appe;rs in

e W/ i geems likely that a thirty percent error in ux could
substantially alter the results, and may exlain the observed maximum in
Kawatini and Meroney's data.

Aside from experimental errors, there is the question of whether
zolhg is a function only of thga. Inspecting Figure 5.42, it 1is seen
that in the wind tunnel studies of Thom {1971), Plate (1965), and
Seginer (1976), (for which good model agreement was found in Chapter
Two), the values of zO/hg do not generally agree with those of Kawatini
and Meroney at the same value of thga. This suggests that zofhg may
depend on other factors besides thga, such as Reynold’s number.
effects, or hg/hw’ which ranged in the above wind tunnel studies from J
ta la.

Wind tunnels are essentially confined flow situations, and may
not duplicate the exact conditions of unconfined flow. This is
corroborated by noting that, in modeling the wind tunnel studies of
Chapter Two, unsatisfactory agreement was obtained by treating the

flows as being unconfined. As discussed previously, there 1s generally
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more diffusion in unconfined than confined flows. This could explain
the generally higher values of zo/hg observed in the unconfined model
flow cases. Under unconfined flow conditions, having relatively more

diffusion, there would likely be more penetration into the

obstructions, and thus higher z,.

5.6.2 Flow Profiles in Obstructions

The roughness length (z,) was used in (2.10) to determine
the flow above obstructions in unconfined flow. Within the

obstructions, a commonly used relatiomship to obtain the velocity is

;zﬁgy = axp (ac(z/hg-l)) (2.12)
where o, is the extinction coefficient, defined in Chapter Two. The
velocity at the top of the obstructions (u(hg)) must be known
beforehand, and is not predicted by the model.

The extinction coefficient o, is commonly determined by taking
the slope of the plot of 1n(u) versus (z/hg-l). This procedure was
followed for the unconfined flow model cases, the results of which are
shown in Figure 5,43. The trend of increasing o, with thga observed
in the model results has been noted by Clonce (1972). 1In his review,
Cionco (1972) concluded that &, varies between 4 and .8,
approximately, for rigid elements, such as citrus orchards, wooden
pegs, plastic strips, or bushel basket. This range agrees with the

values determined for the flow model cases.
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5.7 Conclusions
The variables governing both confined and unconfined obstructed

flow may be arranged into the following dimensionless parameters

2 ~N
Eﬂ EE, Ch a ‘H: Uh
 th T 20 T
m

where U“l = (Uﬁ + U*)lfz, and ﬁ, h are appropriate scales for defining a

Reynold's number. Simulations in which all parameters but %?-were held
constant show that Reynold's number effects have relatively little
influence on the major flow features. In a similar fashionm, the ratio
ha/hg was found to be unimportant, leaving three parameters
representing grass density, grass height and the relative importance of
shear. The relationship between these dimensionless parameters and
various flow field characteristics was then investigated through a
series of model runs. On the basis of these simulations, the following
conclusions concerning the effect of obstructions on the flow field may
be drawn. (Unless other specified, hg/hw=1)

(1> For thga of about .1, the velocity is reduced below it's
non—obstructed value by approximately a factor of four for pressure
driven flows, and by almost a factor of ten for shear driven flows.
The greater reduction for wind driven flows is due to the fact that,
unlike the pressure gradient (g g‘—i), which is uniform with depth, the
stress driving the shear flow attenuates with depth.

(2) The scale U =Um(.'r!/thga)]’/2 approximates the velocity of

g
pressure driven flows in which thga > .1. This result does not apply
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to shear driven flows, owing to the non—uniformity in the velocity
profiles.

(3) For small values of h.g/hw (<.25), the wvariation of the dimension-
less total flow conveyance (Ut/Um) with Cahga is about the same for both shear
and pressure driven flows, indicating the equivalence of these two forces when
most of the flow depth is unobstructéd. For hg/hw'less than about .75, the
variation of U£/Um with thga is approximately equal for both
confined flow and unconfined flow; this is in accordance with
the idea that unconfined flow is a limiting case of confined flow in
which hg/hw approaches zero.

(4) As obstructions are introduced into the flow, the turbulent
kinetic energy k increases, reaching a maximum for thga between zero
and .01, and then starts to decline for larger thga. The increased
levels of k for low vegetation densities has implications for aquatic
plants, whose life processes may be enhanced by turbulent moticn in the
surrounding fluid.

{5) The presence of obstructions dramatically alters the
relative magnitudes of the terms in the kinetic energy equation from
that in non-obstructed flows, where the major balance is between
production due to shear (P.) and dissipation. For pressure driven
confined flows (with thga > .1), the major balance is between
production due to drag (P4) and dissipation, from which it follows that
dissipation varies with a~1/2,  This result does not apply to shear

driven flows, where P, and turbulent diffusion are generally not
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negligible. For unconfined flows, turbulent diffusion is one of the
leading terms within the obstructions because of transport from above
the obstructions; as a result, the flow fleld is more uniform than in
the confined pressure driven flows.

Reviewing the above discussion shows that for thga greater than
about .1, the flow field characteristics, including vertical profiles
of u, k, u,, and ¢ are significantly different from the equivalent non-
obstructed flowé. This result applies for each of the types of flow in
Figure 5.1, and is thus of sufficient genmerality to say that the motion
of a fluid passing between obstructions having hga greater than about
.1 will share few of the characteristics of conventional open-channel
flow, and may be classified as being obstruction-dominated.

In addition to flow field characteristics, this chapter also
examined the concepts underlying other obstructed flow models, and
compared the values of empirical coefficients appearing in previous
studies with those predicted by the model proposed here. The results
of this analysis may be summarized as follows:

(1) The turbulent structure within obstructed flow will general-
ly be influenced by both turbulent diffusion and the two length scales
(hg) and (a), thus precluding simple turbulence models that do not
account for these factors.

(2) Observed values of the empirical coefficients z, and ¢,
which appear in analytical expressions for unconfined flow above and
within obstructions, were found to be in generally good agreement with

predicted model results.
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CHAPTER VI

EPILOGUE

Thiz study has taken the low Reynold's number k- € model, as
developed by other researchers for non-obstructed flows, and extended
it's capabilities to include obstructed flow processes. The abilitry of
the model to reproduce the vertical variation of horizontal velocity,
as well as more general turbulent properties such as kinetic enenrgy
and dissipation; has been demonstrated by comparison with a wide
variety of labortory and field studies, raﬁging from a water flume
experiment of flow through plastic strips; to airflow through bean and
corn chps. The génerally good agreément found in these compafisons
between observed and pfédiétéd results warrants the use of the model
in a prédictiﬁé mode. This is further sﬁpportgd by noting that the
model contains no adjﬁatable constants, and requires no computational
fitting of parameters to experimental data, as 1s necessary in many
previous obstructed flow schemes.

In addition to model comparisons against experimental studies,
the flow algorithm proposed here was also used in investigations
considering the sensitivity of the flow field to the relevant
parameters governing ohbstructed flow sltuations, these parameters being
defined in Chapter Five. The sensitivity studies provided insight

into the various flow regimes encountered in natural systems, such as
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tidally inundated salt marshes.

While this report has sought to provide a better understanding of
obstructed flow processes, there are still many issues remaining to be
considered. In particular, further study is merited in the following
areas.

(1) Improvements in the basic model formulation

There are three major ways in which the model formulation could
be improved. First, a better knowledge is needed of the relatiomships
between the turbulent parameters (appearing as coefficients in the
model) and the physical nature of the obstructiona. Thus, for
instance, more work could be dome on the dependence of the drag
coefficient (Cy4) on the obstruction geometry (i.e. rod or leaf),
flexibility, and density. As discussed in Chapter Two, the drag
coefficient applied to a group of obstructions has been found to be
generally less than that for a single element. Typically, however, the
data relating to this sheltering effect is mentioned as a gide~note in
a larger study of flow through vegatative canopies, where the primary
interest is in the velocity. Laboratory investigations focusing solely
on this question would be worthwhile. One possibility would be to
conduct a series of water flume tests through artificial vegetation,
such as circular cylinders, having roughly the same geometry and
spacing as marsh grass. In conjunction with these tests, it might be
feasible to measure the drag coefficient on live marsh grass set up in

the flume.
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The second area in which the model formulation could be improved
concerns the addition of terms representing the effect of skin
friction. In it's current form, the model proposed in this study takes
no account of skin friction drag on the obstructions, or the
dissipation of kinetic energy due to skin friction. Inclusion of these
effects would likely increase the model's capability to predict the
flow through vegetative cancpies having large, leafy surfaces.

Third, the model could be improved through the development of a
technique allowing the empirical treatment of the viscous regions near
boundaries. At present, the model extends the calculations through the
viscous zones, requiring a relatively large number of grid points to
cover the flow depth, as discussed below. The viscous zone could be
avolded altogether through the development of universal wall functions,
analogous to those used in non-obstructed flows. These functions
might be derived by analyzing the model predictions of the near-wall
turbulent structure in obstructed flow situations, and trying to find
general patterns in the vertical distributions of the variables. As
the parameter thga goes to zero, the variables will exhibit the same
trends as observed in non-obstructed flows. To avoid the complexities
associated with the transition from obstructed to non-obstructed
conditions, only obstruction dominated flows, having thga greater than

.1, should be examined initially.

(2) Improvements in the model's computational efficienc
¥y

In addition to improvements in the model formulation, there are
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also changes that could be made to increase the efficiency of the flow
algorithm. One area of improvement deals with the grid spacing.
Adequate resolution of the viscous zone near solid walls, or other
interfaces, requires a fine grid spacing, resulting in a large number
of grid points. As discussed in Chapter Three, 137 nodes are currently
being used to cover a flow depth of .Zm with a viscous zone at each

end having 10 points within the region R, <1 (Rt is the turbulent
Reynold’'s number, defined as R, = kZfve).

It seems possible that the number of grid points within the
viscous zone could be relaxed without a disproportionate loss in
solution accuracy. Ideally, the viscous zone could be passed over
altogether through the use of universal wall functions, as described
above.

A second area in which work could be done to improve the model's
efficiency deals with the underrelaxation scheme. At present, the
underrelaxation coefficient o for the dependent variables u,v,k, and
is held constant at a value of .75; for the turbulent diffusivity o=.5.
(The lower the value of o, the less change that occurs in the variable
between iterations). A more efficlent approach, in terms of the number
of iterations required te reach a solution, would be to have a
different value of g for each variable, as determined by the
sensitivity of the solution process to the variable in question. Thus,
for instance, it seems likely that o could be greater for u or v, than

for k or £, in accordance with the fact that the k and ¢ equations are
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more non-linear than the generally well behaved momentum equations.

The value of o used to underrelax (ut) should probably be the smallest,
as |, plays a central role in almost all the non-linear terms of the
model equations. Experience has shown that underrelaxation of H,, in
addition to k and e, is essential if instabilities and non-convergence
is to be avoided.

In addition to having different values of @ for each variable, it
might also be worthwhile to make ¢ a function of the turbulent
Reynold's number Rye Inm reglions of low turbulence, such as near walls
or interfaces, where change is propagated primarily by viscous effects, o
could probably be greater than in highly turbulent regions, where the
flow field would respond relatively quicker to any perturbations, thus

increasing the likelihood of instabilities.

(3) Field Data

The field study of free surface properties in Great Sipewissett
Marsh described in Chapter Four was biased toward conditions of
pressure driven flow, where the wind stress had generally little
importance, and where the grass usually extended throughout the entire
water column. Under these conditions, the velocity is fairly uniform,
and is given by (4.6 ). It would be useful to investigate the marsh
conditions at the other extreme, i.e., flows driven mainly by wind
stress, or in which the grass is well submerged below the water

surface.
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Another worthwhile task réléting to future field work would be to
study the relationships in the marsh between vegetation density, type

of grass, and position on the marsh surface. This could be done using

the technique described by Schaefer et al (1982), who measured the
vertical (a) distribution in a limited pumber of sites in Great

Sippewissett Marsh, all but one of which corresponded to the grass

type Spartina alterniflora.

(4) Model Applications

The model cases considered in this study corresponded to
conditions of uni-directional flow. To extend it's range of
applications, the model might be used to simulate obstructed flow in a
dead end channel, having zero net transport, and in which there would
thus be a flow reversal . This situation was studied experimentally by
Tickner {1956), who measured the effects of wire screens on the wind
set-up in a model channel. Reid and Whitaker (1976) used Tickner's
data as the basis for determining the empirical coefficients in their
obstructed flow model. Specificlly, Reid and Whitaker divided the flow
depth into two layers, the bottom layer extending through the
obstructions, and the top layer occupying the region from the top of
the obstructions to the free surface. The stress at the top of the
obstructions was parameterized as being proportiomal to the square of
the velocity difference between the two layers times an empirical
coeficient. The value of the coefficient was determined by fitting

model results to one of Tickner's cases. It would be interesting to
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compare this value with that predicted by the model proposed here, and
to observe how the coefficient varies with the flow geometry.

In addition to being applied to other types of flow, the model
might also serve as a sub-model in a larger scheme for predicting the
distribution of horizontal velocity q(x,y,z,t) within a region of
marsh grass for specified boundary conditions on the water surface
elevation n{x,y,t) at the boundaries of the region and for specified
wind speed Uy(t) (or equivalent surface stress). The horizontal
connection between various parts of the marsh would be determined
through solution of the vertically integrated mass conservation

equation, given as

» a §H=
(¥ hwq)+at 0

where
n
: = E-I adz = depth average velocity
B o
q = a(z,un,ua) = vertical velocity distributilon

The vertical velocity distribution a would be computed using the
algorithm presented in this study. The time dependence is seen to

enter the problem through the continuity relationghip.
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On a larger scale, the flow model for the grassy marsh area could
then be linked to a scheme for computing the flow in the marsh channels
and creeks as a function of the tidal forcing at the ocean boundary
condition. In this way, the entire free surface flow regime of the
marsh could be simulated.

A two~dimensional circulation model such as that described above
would provide the basis for dispersion and diffusion calculations aimed
at determining the horizontal distribution of dissolved constituents.
Specifically, the concentration of the constituent would be obtained
through solution of the mass conservation equations, requiring
knowledge of the velocity as well as the lateral dispersion
coefficient; both of these quantities are readily available from the
algorithm proposed here. Such a transport model would be a requisite
in the development and analysis of new technologies for effective
sewage distribution systems that would enhance the productivity of the
marsh without overloading it's capacity, or endangering public health.

A mass transport model, based on the model proposed here, could
also be used to help study poorly understood physical, chemical, and
biological aspects of marsh ecology, such as the circulation paterns of
crucial nutrients. A somewhat more immediate application of the model
presented in this report, relating to the ecology of marsh systems,
concerns the idea that the turbulence levels in the microenvironment of
aquatic plants will largely control the ratos of various processes
essential to the plant's growth. Use of the model to.determine the
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vegetation density providing the maximum turbulent levels, and
comparison of the resulting (a) values with those observed in nature
would help to quantify the importance of turbulence 1in determining the

optimum plant density.

-4

.
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